随着输入分布在任务寿命中的发展,保持基于学习的模型的性能变得具有挑战性。本文提出了一个框架,可以通过选择标签的测试输入子集来逐步重新训练模型,从而使模型适应更改输入分布。根据(1)整个任务生命周期的模型性能以及(2)与标签和模型再培训相关的累积成本,对此框架中的算法进行了评估。我们提供了卫星姿势估计模型的开源基准,该基准在空间中的卫星图像中训练并部署在新颖场景中(例如,不同的背景或不良行为的像素),在其中评估了算法,以通过在其能力上通过在其上进行高性能来维持高性能的能力。输入的子集。我们还提出了一种新颖的算法,以通过使用贝叶斯不确定性量化从输入中表征信息获得的信息增益,并选择一个子集,并选择一个子集,该子集使用批处理主动学习中的概念来最大化集体信息增益。我们表明,我们的算法在基准上的表现优于其他算法,例如,达到与100%输入标签的算法相当的性能,而仅标记了50%的输入,从而在任务寿命中产生了低成本和高性能。
translated by 谷歌翻译
在这项工作中,我们使用变分推论来量化无线电星系分类的深度学习模型预测的不确定性程度。我们表明,当标记无线电星系时,个体测试样本的模型后差水平与人类不确定性相关。我们探讨了各种不同重量前沿的模型性能和不确定性校准,并表明稀疏事先产生更良好的校准不确定性估计。使用单个重量的后部分布,我们表明我们可以通过从最低信噪比(SNR)中除去权重来修剪30%的完全连接的层权重,而无需显着损失性能。我们证明,可以使用基于Fisher信息的排名来实现更大程度的修剪,但我们注意到两种修剪方法都会影响Failaroff-Riley I型和II型无线电星系的不确定性校准。最后,我们表明,与此领域的其他工作相比,我们经历了冷的后效,因此后部必须缩小后加权以实现良好的预测性能。我们检查是否调整成本函数以适应模型拼盘可以弥补此效果,但发现它不会产生显着差异。我们还研究了原则数据增强的效果,并发现这改善了基线,而且还没有弥补观察到的效果。我们将其解释为寒冷的后效,因为我们的培训样本过于有效的策划导致可能性拼盘,并将其提高到未来无线电银行分类的潜在问题。
translated by 谷歌翻译
When testing conditions differ from those represented in training data, so-called out-of-distribution (OOD) inputs can mar the reliability of black-box learned components in the modern robot autonomy stack. Therefore, coping with OOD data is an important challenge on the path towards trustworthy learning-enabled open-world autonomy. In this paper, we aim to demystify the topic of OOD data and its associated challenges in the context of data-driven robotic systems, drawing connections to emerging paradigms in the ML community that study the effect of OOD data on learned models in isolation. We argue that as roboticists, we should reason about the overall system-level competence of a robot as it performs tasks in OOD conditions. We highlight key research questions around this system-level view of OOD problems to guide future research toward safe and reliable learning-enabled autonomy.
translated by 谷歌翻译
在Mackay(1992)上展开,我们认为,用于主动学习的基于模式的方法 - 类似的基于模型 - 如秃顶 - 具有基本的缺点:它们未直接解释输入变量的测试时间分布。这可以导致采集策略中的病理,因为模型参数的最大信息是最大信息,可能不是最大地信息,例如,当池集中的数据比最终预测任务的数据更大时,或者池和试验样品的分布不同。为了纠正这一点,我们重新审视了基于最大化关于可能的未来预测的预期信息的收购策略,参考这是预期的预测信息增益(EPIG)。由于EPIG对批量采集不扩展,我们进一步检查了替代策略,秃头和EPIG之间的混合,我们称之为联合预测信息增益(Jepig)。我们考虑在各种数据集中使用贝叶斯神经网络的主动学习,检查池集中分布班下的行为。
translated by 谷歌翻译
As an important data selection schema, active learning emerges as the essential component when iterating an Artificial Intelligence (AI) model. It becomes even more critical given the dominance of deep neural network based models, which are composed of a large number of parameters and data hungry, in application. Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions. In this paper, we present a review of active learning through deep active learning approaches from the following perspectives: 1) technical advancements in active learning, 2) applications of active learning in computer vision, 3) industrial systems leveraging or with potential to leverage active learning for data iteration, 4) current limitations and future research directions. We expect this paper to clarify the significance of active learning in a modern AI model manufacturing process and to bring additional research attention to active learning. By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies by boosting model production at scale.
translated by 谷歌翻译
作为行业4.0时代的一项新兴技术,数字双胞胎因其承诺进一步优化流程设计,质量控制,健康监测,决策和政策制定等,通过全面对物理世界进行建模,以进一步优化流程设计,质量控制,健康监测,决策和政策,因此获得了前所未有的关注。互连的数字模型。在一系列两部分的论文中,我们研究了不同建模技术,孪生启用技术以及数字双胞胎常用的不确定性量化和优化方法的基本作用。第二篇论文介绍了数字双胞胎的关键启示技术的文献综述,重点是不确定性量化,优化方法,开源数据集和工具,主要发现,挑战和未来方向。讨论的重点是当前的不确定性量化和优化方法,以及如何在数字双胞胎的不同维度中应用它们。此外,本文介绍了一个案例研究,其中构建和测试了电池数字双胞胎,以说明在这两部分评论中回顾的一些建模和孪生方法。 GITHUB上可以找到用于生成案例研究中所有结果和数字的代码和预处理数据。
translated by 谷歌翻译
数十年来,计算机系统持有大量个人数据。一方面,这种数据丰度允许在人工智能(AI),尤其是机器学习(ML)模型中突破。另一方面,它可能威胁用户的隐私并削弱人类与人工智能之间的信任。最近的法规要求,可以从一般情况下从计算机系统中删除有关用户的私人信息,特别是根据要求从ML模型中删除(例如,“被遗忘的权利”)。虽然从后端数据库中删除数据应该很简单,但在AI上下文中,它不够,因为ML模型经常“记住”旧数据。现有的对抗攻击证明,我们可以从训练有素的模型中学习私人会员或培训数据的属性。这种现象要求采用新的范式,即机器学习,以使ML模型忘记了特定的数据。事实证明,由于缺乏共同的框架和资源,最近在机器上学习的工作无法完全解决问题。在本调查文件中,我们试图在其定义,场景,机制和应用中对机器进行彻底的研究。具体而言,作为最先进的研究的类别集合,我们希望为那些寻求机器未学习的入门及其各种表述,设计要求,删除请求,算法和用途的人提供广泛的参考。 ML申请。此外,我们希望概述范式中的关键发现和趋势,并突出显示尚未看到机器无法使用的新研究领域,但仍可以受益匪浅。我们希望这项调查为ML研究人员以及寻求创新隐私技术的研究人员提供宝贵的参考。我们的资源是在https://github.com/tamlhp/awesome-machine-unlearning上。
translated by 谷歌翻译
标记数据可以是昂贵的任务,因为它通常由域专家手动执行。对于深度学习而言,这是繁琐的,因为它取决于大型标记的数据集。主动学习(AL)是一种范式,旨在通过仅使用二手车型认为最具信息丰富的数据来减少标签努力。在文本分类设置中,在AL上完成了很少的研究,旁边没有涉及最近的最先进的自然语言处理(NLP)模型。在这里,我们介绍了一个实证研究,可以将基于不确定性的基于不确定性的算法与Bert $ _ {base} $相比,作为使用的分类器。我们评估两个NLP分类数据集的算法:斯坦福情绪树木银行和kvk-Front页面。此外,我们探讨了旨在解决不确定性的al的预定问题的启发式;即,它是不可规范的,并且易于选择异常值。此外,我们探讨了查询池大小对al的性能的影响。虽然发现,AL的拟议启发式没有提高AL的表现;我们的结果表明,使用BERT $ _ {Base} $概率使用不确定性的AL。随着查询池大小变大,性能的这种差异可以减少。
translated by 谷歌翻译
越来越需要与深神经网络兼容的有效主动学习算法。本文激励和重新审视基于经典的Fisher的主动选择目标,并提出了诱饵,实用,易拔和高性能的算法,使其可以与神经模型一起使用。诱饵从参数模型的最大似然估计器(MLE)的理论分析中汲取灵感。它通过在FISHER信息方面优化MLE误差的绑定来选择批次的样本,我们通过利用线性代数结构可以在规模上有效地实现,特别是在现代硬件上执行。我们的实验表明,诱饵始于先前的本领域技术在分类和回归问题上,并且足够灵活,可以与各种模型架构一起使用。
translated by 谷歌翻译
人工智能的最新趋势是将验证的模型用于语言和视觉任务,这些模型已经实现了非凡的表现,但也令人困惑。因此,以各种方式探索这些模型的能力对该领域至关重要。在本文中,我们探讨了模型的可靠性,在其中我们将可靠的模型定义为一个不仅可以实现强大的预测性能,而且在许多涉及不确定性(例如选择性预测,开放式设置识别)的决策任务上,在许多决策任务上表现出色,而且表现良好。强大的概括(例如,准确性和适当的评分规则,例如在分布数据集中和分发数据集上的对数可能性)和适应性(例如,主动学习,几乎没有射击不确定性)。我们设计了40个数据集的10种任务类型,以评估视觉和语言域上可靠性的不同方面。为了提高可靠性,我们分别开发了VIT-PLEX和T5-PLEX,分别针对视觉和语言方式扩展了大型模型。 PLEX极大地改善了跨可靠性任务的最先进,并简化了传统协议,因为它可以改善开箱即用的性能,并且不需要设计分数或为每个任务调整模型。我们演示了高达1B参数的模型尺寸的缩放效果,并预处理数据集大小最多4B示例。我们还展示了PLEX在具有挑战性的任务上的功能,包括零射门的开放式识别,主动学习和对话语言理解中的不确定性。
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
量化监督学习模型的不确定性在制定更可靠的预测方面发挥着重要作用。认知不确定性,通常是由于对模型的知识不足,可以通过收集更多数据或精炼学习模型来减少。在过去的几年里,学者提出了许多认识的不确定性处理技术,这些技术可以大致分为两类,即贝叶斯和集合。本文对过去五年来提供了对监督学习的认识性不确定性学习技术的全面综述。因此,我们首先,将认知不确定性分解为偏见和方差术语。然后,介绍了认知不确定性学习技术以及其代表模型的分层分类。此外,提出了几种应用,例如计算机视觉(CV)和自然语言处理(NLP),然后讨论研究差距和可能的未来研究方向。
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
虽然神经网络是强大的功能近似器,但底层建模假设最终定义了它们是参数化的假设类。在分类中,随着常用的SoftMax能够代表任何分类分布,这些假设很小。然而,在回归中,通常放置了要实现的连续分布类型的限制假设,如通过平均平均误差及其潜在的高斯度假的训练的主导选择。最近,建模前进允许对要建模的连续分布的类型无关,授予回归分类模型的灵活性。虽然过去的研究在表现方面强调了这种灵活的回归模型的益处,但在这里我们研究了模型选择对不确定性估计的影响。我们强调,根据模型拼写,炼狱不确定性没有妥善捕获,并且贝叶斯治疗错过的模型导致不可靠的认知不确定性估计。总体而言,我们的研究概述了回归中的建模选择如何影响不确定性估计,从而概述任何下游决策过程。
translated by 谷歌翻译
尽管基于卷积神经网络(CNN)的组织病理学图像的分类模型,但量化其不确定性是不可行的。此外,当数据偏置时,CNN可以遭受过度装备。我们展示贝叶斯-CNN可以通过自动规范并通过量化不确定性来克服这些限制。我们开发了一种新颖的技术,利用贝叶斯-CNN提供的不确定性,这显着提高了大部分测试数据的性能(约为77%的测试数据的准确性提高了约6%)。此外,我们通过非线性维度降低技术将数据投射到低尺寸空间来提供对不确定性的新颖解释。该维度降低能够通过可视化解释测试数据,并在低维特征空间中揭示数据的结构。我们表明,贝叶斯-CNN可以通过分别将假阴性和假阳性降低11%和7.7%的最先进的转移学习CNN(TL-CNN)来表现出远得更好。它具有仅为186万个参数的这种性能,而TL-CNN的参数仅为134.33亿。此外,我们通过引入随机自适应激活功能来修改贝叶斯-CNN。修改后的贝叶斯-CNN在所有性能指标上的贝叶斯-CNN略胜一筹,并显着降低了误报和误报的数量(两者减少了3%)。我们还表明,通过执行McNemar的统计显着性测试,这些结果具有统计学意义。这项工作显示了贝叶斯-CNN对现有技术的优势,解释并利用组织病理学图像的不确定性。它应该在各种医学图像分类中找到应用程序。
translated by 谷歌翻译
本文解决了在水模型部署民主化中采用了机器学习的一些挑战。第一个挑战是减少了在主动学习的帮助下减少了标签努力(因此关注数据质量),模型推断与Oracle之间的反馈循环:如在保险中,未标记的数据通常丰富,主动学习可能会成为一个重要的资产减少标签成本。为此目的,本文在研究其对合成和真实数据集的实证影响之前,阐述了各种古典主动学习方法。保险中的另一个关键挑战是模型推论中的公平问题。我们将在此主动学习框架中介绍和整合一个用于多级任务的后处理公平,以解决这两个问题。最后对不公平数据集的数值实验突出显示所提出的设置在模型精度和公平性之间存在良好的折衷。
translated by 谷歌翻译
It is known that neural networks have the problem of being over-confident when directly using the output label distribution to generate uncertainty measures. Existing methods mainly resolve this issue by retraining the entire model to impose the uncertainty quantification capability so that the learned model can achieve desired performance in accuracy and uncertainty prediction simultaneously. However, training the model from scratch is computationally expensive and may not be feasible in many situations. In this work, we consider a more practical post-hoc uncertainty learning setting, where a well-trained base model is given, and we focus on the uncertainty quantification task at the second stage of training. We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities, which is effective and computationally efficient. Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties and easily adapt to different application settings, including out-of-domain data detection, misclassification detection, and trustworthy transfer learning. We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications over multiple representative image classification benchmarks.
translated by 谷歌翻译
独立训练的神经网络的集合是一种最新的方法,可以在深度学习中估算预测性不确定性,并且可以通过三角洲函数的混合物解释为后验分布的近似值。合奏的培训依赖于损失景观的非跨性别性和其单个成员的随机初始化,从而使后近似不受控制。本文提出了一种解决此限制的新颖和原则性的方法,最大程度地减少了函数空间中真实后验和内核密度估计器(KDE)之间的$ f $ divergence。我们从组合的角度分析了这一目标,并表明它在任何$ f $的混合组件方面都是supporular。随后,我们考虑了贪婪合奏结构的问题。从负$ f $ didivergence上的边际增益来量化后近似的改善,通过将新组件添加到KDE中得出,我们得出了集合方法的新型多样性项。我们的方法的性能在计算机视觉的分布外检测基准测试中得到了证明,该基准在多个数据集中训练的一系列架构中。我们方法的源代码可在https://github.com/oulu-imeds/greedy_ensembles_training上公开获得。
translated by 谷歌翻译
挖掘数据流姿势存在许多挑战,包括数据的连续和非静止性质,待处理的大量信息和限制计算资源。虽然在文献中提出了一些针对这个问题的监督解决方案,但大多数人都假定访问地面真理(以类标签的形式)是无限的,并且在更新学习系统时可以立即使用此类信息。这远非现实,因为必须考虑获取标签的基本成本。因此,需要解决流方案中实际真相要求的解决方案。在本文中,通过组合来自主动学习和自我标签的信息,提出了一种用于预算的挖水数据流的新框架。我们介绍了几种策略,可以利用智能实例选择和半监督程序,同时考虑到概念漂移的潜在存在。这种混合方法允许有效的探索和利用在现实标记预算中的流数据结构。由于我们的框架工作为包装器,因此它可以应用于不同的学习算法。实验研究,在具有各种类型的概念漂移的多样化现实数据流中进行的实验研究,证明了在处理对类标签的高度限制时拟议的策略的有用性。当一个人不能增加标签或更换低效分类器的预算时,呈现的混合方法尤其可行。我们为我们的战略提供了一套关于适用性领域的建议。
translated by 谷歌翻译
The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often referred to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of attempts so far at handling uncertainty in general and formalizing this distinction in particular.
translated by 谷歌翻译