轴承是容易出乎意料断层的旋转机的重要组成部分之一。因此,轴承诊断和状况监测对于降低众多行业的运营成本和停机时间至关重要。在各种生产条件下,轴承可以在一系列载荷和速度下进行操作,这会导致与每种故障类型相关的不同振动模式。正常数据很足够,因为系统通常在所需条件下工作。另一方面,故障数据很少见,在许多情况下,没有记录故障类别的数据。访问故障数据对于开发数据驱动的故障诊断工具至关重要,该工具可以提高操作的性能和安全性。为此,引入了基于条件生成对抗网络(CGAN)的新型算法。该算法对任何实际故障条件的正常和故障数据进行培训,从目标条件的正常数据中生成故障数据。所提出的方法在现实世界中的数据集上进行了验证,并为不同条件生成故障数据。实施了几种最先进的分类器和可视化模型,以评估合成数据的质量。结果证明了所提出的算法的功效。
translated by 谷歌翻译
以时间序列形式出现的信号测量是医疗机学习应用中使用的最常见数据类型之一。这样的数据集的大小通常很小,收集和注释昂贵,并且可能涉及隐私问题,这阻碍了我们培训用于生物医学应用的大型,最先进的深度学习模型的能力。对于时间序列数据,我们可以用来扩展数据集大小的数据增强策略套件受到维护信号的基本属性的限制。生成对抗网络(GAN)可以用作另一种数据增强工具。在本文中,我们提出了TTS-CGAN,这是一种基于变压器的条件GAN模型,可以在现有的多级数据集上进行训练,并生成特定于类的合成时间序列序列的任意长度。我们详细介绍了模型架构和设计策略。由我们的模型生成的合成序列与真实的序列无法区分,可以用来补充或替换相同类型的真实信号,从而实现了数据增强的目标。为了评估生成的数据的质量,我们修改小波相干度量指标,以比较两组信号之间的相似性,还可以进行案例研究,其中使用合成和真实数据的混合来训练深度学习模型用于序列分类。与其他可视化技术和定性评估方法一起,我们证明TTS-CGAN生成的合成数据类似于真实数据,并且我们的模型的性能优于为时间序列数据生成而构建的其他最先进的GAN模型。
translated by 谷歌翻译
从文本描述中综合现实图像是计算机视觉中的主要挑战。当前对图像合成方法的文本缺乏产生代表文本描述符的高分辨率图像。大多数现有的研究都依赖于生成的对抗网络(GAN)或变异自动编码器(VAE)。甘斯具有产生更清晰的图像的能力,但缺乏输出的多样性,而VAE擅长生产各种输出,但是产生的图像通常是模糊的。考虑到gan和vaes的相对优势,我们提出了一个新的有条件VAE(CVAE)和条件gan(CGAN)网络架构,用于合成以文本描述为条件的图像。这项研究使用条件VAE作为初始发电机来生成文本描述符的高级草图。这款来自第一阶段的高级草图输出和文本描述符被用作条件GAN网络的输入。第二阶段GAN产生256x256高分辨率图像。所提出的体系结构受益于条件加强和有条件的GAN网络的残留块,以实现结果。使用CUB和Oxford-102数据集进行了多个实验,并将所提出方法的结果与Stackgan等最新技术进行了比较。实验表明,所提出的方法生成了以文本描述为条件的高分辨率图像,并使用两个数据集基于Inception和Frechet Inception评分产生竞争结果
translated by 谷歌翻译
与CNN的分类,分割或对象检测相比,生成网络的目标和方法根本不同。最初,它们不是作为图像分析工具,而是生成自然看起来的图像。已经提出了对抗性训练范式来稳定生成方法,并已被证明是非常成功的 - 尽管绝不是第一次尝试。本章对生成对抗网络(GAN)的动机进行了基本介绍,并通​​过抽象基本任务和工作机制并得出了早期实用方法的困难来追溯其成功的道路。将显示进行更稳定的训练方法,也将显示出不良收敛及其原因的典型迹象。尽管本章侧重于用于图像生成和图像分析的gan,但对抗性训练范式本身并非特定于图像,并且在图像分析中也概括了任务。在将GAN与最近进入场景的进一步生成建模方法进行对比之前,将闻名图像语义分割和异常检测的架构示例。这将允许对限制的上下文化观点,但也可以对gans有好处。
translated by 谷歌翻译
生成的对抗网络(GAN)是在众多领域成功使用的一种强大的深度学习模型。它们属于一个称为生成方法的更广泛的家族,该家族通过从真实示例中学习样本分布来生成新数据。在临床背景下,与传统的生成方法相比,GAN在捕获空间复杂,非线性和潜在微妙的疾病作用方面表现出增强的能力。这篇综述评估了有关gan在各种神经系统疾病的成像研究中的应用的现有文献,包括阿尔茨海默氏病,脑肿瘤,脑老化和多发性硬化症。我们为每个应用程序提供了各种GAN方法的直观解释,并进一步讨论了在神经影像学中利用gans的主要挑战,开放问题以及有希望的未来方向。我们旨在通过强调如何利用gan来支持临床决策,并有助于更好地理解脑部疾病的结构和功能模式,从而弥合先进的深度学习方法和神经病学研究之间的差距。
translated by 谷歌翻译
对机器学习和创造力领域的兴趣越来越大。这项调查概述了计算创造力理论,关键机器学习技术(包括生成深度学习)和相应的自动评估方法的历史和现状。在对该领域的主要贡献进行了批判性讨论之后,我们概述了当前的研究挑战和该领域的新兴机会。
translated by 谷歌翻译
由于能够产生与实际数据的显着统计相似性的高质量数据,生成的对抗性网络(GANS)最近在AI社区中引起了相当大的关注。从根本上,GaN是在训练中以越野方式训练的两个神经网络之间的游戏,以达到零和纳什均衡轮廓。尽管在过去几年中在GAN完成了改进,但仍有几个问题仍有待解决。本文评论了GANS游戏理论方面的文献,并解决了游戏理论模型如何应对生成模型的特殊挑战,提高GAN的表现。我们首先提出一些预备,包括基本GaN模型和一些博弈论背景。然后,我们将分类系统将最先进的解决方案分为三个主要类别:修改的游戏模型,修改的架构和修改的学习方法。分类基于通过文献中提出的游戏理论方法对基本GaN模型进行的修改。然后,我们探讨每个类别的目标,并讨论每个类别的最新作品。最后,我们讨论了这一领域的剩余挑战,并提出了未来的研究方向。
translated by 谷歌翻译
第五代(5G)网络和超越设想巨大的东西互联网(物联网)推出,以支持延长现实(XR),增强/虚拟现实(AR / VR),工业自动化,自主驾驶和智能所有带来的破坏性应用一起占用射频(RF)频谱的大规模和多样化的IOT设备。随着频谱嘎嘎和吞吐量挑战,这种大规模的无线设备暴露了前所未有的威胁表面。 RF指纹识别是预约的作为候选技术,可以与加密和零信任安全措施相结合,以确保无线网络中的数据隐私,机密性和完整性。在未来的通信网络中,在这项工作中,在未来的通信网络中的相关性,我们对RF指纹识别方法进行了全面的调查,从传统观点到最近的基于深度学习(DL)的算法。现有的调查大多专注于无线指纹方法的受限制呈现,然而,许多方面仍然是不可能的。然而,在这项工作中,我们通过解决信号智能(SIGINT),应用程序,相关DL算法,RF指纹技术的系统文献综述来缓解这一点,跨越过去二十年的RF指纹技术的系统文献综述,对数据集和潜在研究途径的讨论 - 必须以百科全书的方式阐明读者的必要条件。
translated by 谷歌翻译
鉴于无线频谱的有限性和对无线通信最近的技术突破产生的频谱使用不断增加的需求,干扰问题仍在继续持续存在。尽管最近解决干涉问题的进步,但干扰仍然呈现出有效使用频谱的挑战。这部分是由于Wi-Fi的无许可和管理共享乐队使用的升高,长期演进(LTE)未许可(LTE-U),LTE许可辅助访问(LAA),5G NR等机会主义频谱访问解决方案。因此,需要对干扰稳健的有效频谱使用方案的需求从未如此重要。在过去,通过使用避免技术以及非AI缓解方法(例如,自适应滤波器)来解决问题的大多数解决方案。非AI技术的关键缺陷是需要提取或开发信号特征的域专业知识,例如CycrationArity,带宽和干扰信号的调制。最近,研究人员已成功探索了AI / ML的物理(PHY)层技术,尤其是深度学习,可减少或补偿干扰信号,而不是简单地避免它。 ML基于ML的方法的潜在思想是学习来自数据的干扰或干扰特性,从而使需要对抑制干扰的域专业知识进行侧联。在本文中,我们审查了广泛的技术,这些技术已经深入了解抑制干扰。我们为干扰抑制中许多不同类型的深度学习技术提供比较和指导。此外,我们突出了在干扰抑制中成功采用深度学习的挑战和潜在的未来研究方向。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
基于预测方法的深度学习已成为时间序列预测或预测的许多应用中的首选方法,通常通常优于其他方法。因此,在过去的几年中,这些方法现在在大规模的工业预测应用中无处不在,并且一直在预测竞赛(例如M4和M5)中排名最佳。这种实践上的成功进一步提高了学术兴趣,以理解和改善深厚的预测方法。在本文中,我们提供了该领域的介绍和概述:我们为深入预测的重要构建块提出了一定深度的深入预测;随后,我们使用这些构建块,调查了最近的深度预测文献的广度。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
数据已成为当今世界上最有价值的资源。随着数据驱动算法的大量扩散,例如基于深度学习的方法,数据的可用性引起了极大的兴趣。在这种情况下,特别需要高质量的培训,验证和测试数据集。体积数据是医学中非常重要的资源,因为它范围从疾病诊断到治疗监测。如果数据集足够,则可以培训模型来帮助医生完成这些任务。不幸的是,在某些情况和应用程序中,大量数据不可用。例如,在医疗领域,罕见疾病和隐私问题可能导致数据可用性受到限制。在非医学领域,获得足够数量的高质量数据的高成本也可能引起人们的关注。解决这些问题的方法可能是生成合成数据,以结合其他更传统的数据增强方法来执行数据增强。因此,关于3D生成对抗网络(GAN)的大多数出版物都在医疗领域内。生成现实合成数据的机制的存在是克服这一挑战的好资产,尤其是在医疗保健中,因为数据必须具有良好的质量并且接近现实,即现实,并且没有隐私问题。在这篇综述中,我们提供了使用GAN生成现实的3D合成数据的作品的摘要。因此,我们概述了具有共同体系结构,优势和缺点的这些领域中基于GAN的方法。我们提出了一种新颖的分类学,评估,挑战和研究机会,以提供医学和其他领域甘恩当前状态的整体概述。
translated by 谷歌翻译
深度学习属于人工智能领域,机器执行通常需要某种人类智能的任务。类似于大脑的基本结构,深度学习算法包括一种人工神经网络,其类似于生物脑结构。利用他们的感官模仿人类的学习过程,深入学习网络被送入(感官)数据,如文本,图像,视频或声音。这些网络在不同的任务中优于最先进的方法,因此,整个领域在过去几年中看到了指数增长。这种增长在过去几年中每年超过10,000多种出版物。例如,只有在医疗领域中的所有出版物中覆盖的搜索引擎只能在Q3 2020中覆盖所有出版物的子集,用于搜索术语“深度学习”,其中大约90%来自过去三年。因此,对深度学习领域的完全概述已经不可能在不久的将来获得,并且在不久的将来可能会难以获得难以获得子场的概要。但是,有几个关于深度学习的综述文章,这些文章专注于特定的科学领域或应用程序,例如计算机愿景的深度学习进步或在物体检测等特定任务中进行。随着这些调查作为基础,这一贡献的目的是提供对不同科学学科的深度学习的第一个高级,分类的元调查。根据底层数据来源(图像,语言,医疗,混合)选择了类别(计算机愿景,语言处理,医疗信息和其他工程)。此外,我们还审查了每个子类别的常见架构,方法,专业,利弊,评估,挑战和未来方向。
translated by 谷歌翻译
时间序列数据生成近年来越来越受到关注。已经提出了几种生成的对抗网络(GaN)的方法通常是假设目标时间序列数据良好格式化并完成的假设来解决问题。然而,现实世界时间序列(RTS)数据远离该乌托邦,例如,具有可变长度的长序列和信息缺失数据,用于设计强大的发电算法的棘手挑战。在本文中,我们向RTS数据提出了一种新的生成框架 - RTSGAN来解决上述挑战。 RTSGAN首先学习编码器 - 解码器模块,该模块提供时间序列实例和固定维度潜在载体之间的映射,然后学习生成模块以在同一潜在空间中生成vectors。通过组合发电机和解码器,RTSGAN能够生成尊重原始特征分布和时间动态的RTS。为了生成具有缺失值的时间序列,我们进一步用观察嵌入层和决定和生成解码器装备了RTSGAN,以更好地利用信息缺失模式。四个RTS数据集上的实验表明,该框架在用于下游分类和预测任务的合成数据实用程序方面优于前一代方法。
translated by 谷歌翻译
我们提出了一种用于测试使用吸收材料记录辐射电磁(EM)场的天线阵列的新方法,并使用条件编码器解码器模型通过AI评估所得到的热图像串。鉴于馈送到每个阵列元件的信号的功率和相位,我们能够通过我们训练的模型重建正常序列,并将其与热相机观察到的真实序列进行比较。这些热图仅包含低级模式,例如各种形状的斑点。然后,基于轮廓的异常检测器可以将重建误差矩阵映射到异常的分数,以识别故障的天线阵列,并将分类F量度(F-M)增加到46%。我们在天线测试系统收集的时间序列热量量表上展示了我们的方法。传统上,变形自身摩擦(VAE)学习观察噪声可以产生比具有恒定噪声假设的VAE更好的结果。然而,我们证明这不是对这种低级模式的异常检测的情况,有两个原因。首先,结合所学到的观察噪声的基线度量重建概率不能分化异常模式。其次,具有较低观察噪声假设的VAE的接收器操作特性(ROC)曲线下的区域比具有学习噪声的VAE高出11.83%。
translated by 谷歌翻译
当前,借助监督学习方法,基于深度学习的视觉检查已取得了非常成功的成功。但是,在实际的工业场景中,缺陷样本的稀缺性,注释的成本以及缺乏缺陷的先验知识可能会使基于监督的方法无效。近年来,无监督的异常定位算法已在工业检查任务中广泛使用。本文旨在通过深入学习在工业图像中无视无视的异常定位中的最新成就来帮助该领域的研究人员。该调查回顾了120多个重要出版物,其中涵盖了异常定位的各个方面,主要涵盖了所审查方法的各种概念,挑战,分类法,基准数据集和定量性能比较。在审查迄今为止的成就时,本文提供了一些未来研究方向的详细预测和分析。这篇综述为对工业异常本地化感兴趣的研究人员提供了详细的技术信息,并希望将其应用于其他领域的异常本质。
translated by 谷歌翻译
“轨迹”是指由地理空间中的移动物体产生的迹线,通常由一系列按时间顺序排列的点表示,其中每个点由地理空间坐标集和时间戳组成。位置感应和无线通信技术的快速进步使我们能够收集和存储大量的轨迹数据。因此,许多研究人员使用轨迹数据来分析各种移动物体的移动性。在本文中,我们专注于“城市车辆轨迹”,这是指城市交通网络中车辆的轨迹,我们专注于“城市车辆轨迹分析”。城市车辆轨迹分析提供了前所未有的机会,可以了解城市交通网络中的车辆运动模式,包括以用户为中心的旅行经验和系统范围的时空模式。城市车辆轨迹数据的时空特征在结构上相互关联,因此,许多先前的研究人员使用了各种方法来理解这种结构。特别是,由于其强大的函数近似和特征表示能力,深度学习模型是由于许多研究人员的注意。因此,本文的目的是开发基于深度学习的城市车辆轨迹分析模型,以更好地了解城市交通网络的移动模式。特别是,本文重点介绍了两项研究主题,具有很高的必要性,重要性和适用性:下一个位置预测,以及合成轨迹生成。在这项研究中,我们向城市车辆轨迹分析提供了各种新型模型,使用深度学习。
translated by 谷歌翻译
最近在时间序列域中的合成数据生成的工作集中在使用生成的对抗网络。我们提出了一种用于综合生成时间序列数据的新型架构,使用变分自动编码器(VAES)。拟议的架构具有多种不同的特性:可解释性,编码域知识的能力,以及减少培训时间。我们通过对四个多变量数据集的相似性和可预测性评估数据生成质量。我们试验不同尺寸的培训数据,以测量数据可用性对我们VAE方法的产生质量的影响以及几种最先进的数据生成方法。我们对相似​​性测试的结果表明,VAE方法能够准确地代表原始数据的时间属性。在使用生成数据的下一步预测任务上,所提出的VAE架构一致地满足或超过最先进的数据生成方法的性能。虽然降噪可能导致所生成的数据偏离原始数据,但是我们演示了所产生的去噪数据可以使用生成的数据显着提高下一步预测的性能。最后,所提出的架构可以包含域特定的时间模式,例如多项式趋势和季节性,以提供可解释的输出。这种解释性在需要模型输出的透明度的应用中可以是非常有利的,或者用户希望将时间序列模式的先验知识注入到生成模型中。
translated by 谷歌翻译
本次调查绘制了用于分析社交媒体数据的生成方法的研究状态的广泛的全景照片(Sota)。它填补了空白,因为现有的调查文章在其范围内或被约会。我们包括两个重要方面,目前正在挖掘和建模社交媒体的重要性:动态和网络。社会动态对于了解影响影响或疾病的传播,友谊的形成,友谊的形成等,另一方面,可以捕获各种复杂关系,提供额外的洞察力和识别否则将不会被注意的重要模式。
translated by 谷歌翻译