许多利用移动设备中的传感器的应用以及应用机器学习以提供新颖的服务。然而,诸如不同的用户,设备,环境和超参数之类的各种因素影响了这种应用的性能,从而使域移位(即,来自训练源数据集的目标用户的分发偏移)是一个重要问题。虽然最近的域适应技术试图解决这个问题,但各种因素之间的复杂相互作用通常会限制其有效性。我们认为,准确估算未训练的域中的性能可能会显着降低性能不确定性。我们呈现Dapper(域适配性能估计器),其估计目标域中的适应性能,只有未标记的目标数据。我们的直觉是目标数据上模型的输出提供了模型在目标域中的实际性能的线索。 Dapper不需要昂贵的标签成本,也不需要在部署后涉及额外的培训。与四个基线相比,我们与四个真实世界传感数据集进行了评估,表明,估计精度平均17%平均占据了基线的表现。此外,我们的On-Device实验表明,与基线相比,Dapper达到了多达216倍的计算开销。
translated by 谷歌翻译
Automated Program Repair (APR) is defined as the process of fixing a bug/defect in the source code, by an automated tool. APR tools have recently experienced promising results by leveraging state-of-the-art Neural Language Processing (NLP) techniques. APR tools such as TFix and CodeXGLUE combine text-to-text transformers with software-specific techniques are outperforming alternatives, these days. However, in most APR studies the train and test sets are chosen from the same set of projects. In reality, however, APR models are meant to be generalizable to new and different projects. Therefore, there is a potential threat that reported APR models with high effectiveness perform poorly when the characteristics of the new project or its bugs are different than the training set's(Domain Shift). In this study, we first define and measure the domain shift problem in automated program repair. Then, we then propose a domain adaptation framework that can adapt an APR model for a given target project. We conduct an empirical study with three domain adaptation methods FullFineTuning, TuningWithLightWeightAdapterLayers, and CurriculumLearning using two state-of-the-art domain adaptation tools (TFix and CodeXGLUE) and two APR models on 611 bugs from 19 projects. The results show that our proposed framework can improve the effectiveness of TFix by 13.05% and CodeXGLUE by 23.4%. Another contribution of this study is the proposal of a data synthesis method to address the lack of labelled data in APR. We leverage transformers to create a bug generator model. We use the generated synthetic data to domain adapt TFix and CodeXGLUE on the projects with no data (Zero-shot learning), which results in an average improvement of 5.76% and 24.42% for TFix and CodeXGLUE, respectively.
translated by 谷歌翻译
深度学习模型的最新发展,捕捉作物物候的复杂的时间模式有卫星图像时间序列(坐在),大大高级作物分类。然而,当施加到目标区域从训练区空间上不同的,这些模型差没有任何目标标签由于作物物候区域之间的时间位移进行。为了解决这个无人监督跨区域适应环境,现有方法学域不变特征没有任何目标的监督,而不是时间偏移本身。因此,这些技术提供了SITS只有有限的好处。在本文中,我们提出TimeMatch,一种新的无监督领域适应性方法SITS直接占时移。 TimeMatch由两个部分组成:1)时间位移的估计,其估计具有源极训练模型的未标记的目标区域的时间偏移,和2)TimeMatch学习,它结合了时间位移估计与半监督学习到一个分类适应未标记的目标区域。我们还引进了跨区域适应的开放式访问的数据集与来自欧洲四个不同区域的旁边。在此数据集,我们证明了TimeMatch优于所有竞争的方法,通过11%的在五个不同的适应情景F1-得分,创下了新的国家的最先进的跨区域适应性。
translated by 谷歌翻译
联合学习(FL)可以对机器学习模型进行分布式培训,同时将个人数据保存在用户设备上。尽管我们目睹了FL在移动传感领域的越来越多的应用,例如人类活动识别(HAR),但在多设备环境(MDE)的背景下,尚未对FL进行研究,其中每个用户都拥有多个数据生产设备。随着移动设备和可穿戴设备的扩散,MDE在Ubicomp设置中越来越受欢迎,因此需要对其中的FL进行研究。 MDE中的FL的特征是在客户和设备异质性的存在中并不复杂,并不是独立的,并且在客户端之间并非独立分布(非IID)。此外,确保在MDE中有效利用佛罗里达州客户的系统资源仍然是一个重要的挑战。在本文中,我们提出了以用户为中心的FL培训方法来应对MDE中的统计和系统异质性,并在设备之间引起推理性能的一致性。火焰功能(i)以用户为中心的FL培训,利用同一用户的设备之间的时间对齐; (ii)准确性和效率感知设备的选择; (iii)对设备的个性化模型。我们还提出了具有现实的能量流量和网络带宽配置文件的FL评估测试,以及一种基于类的新型数据分配方案,以将现有HAR数据集扩展到联合设置。我们在三个多设备HAR数据集上的实验结果表明,火焰的表现优于各种基准,F1得分高4.3-25.8%,能源效率提高1.02-2.86倍,并高达2.06倍的收敛速度,以通过FL的公平分布来获得目标准确性工作量。
translated by 谷歌翻译
人类行为越来越多地在移动设备上捕获,从而增加了对自动人类活动识别的兴趣。但是,现有数据集通常由脚本运动组成。我们的长期目标是在自然环境中执行移动活动识别。我们收集一个数据集,以支持与下游任务(例如健康监测和干预)相关的活动类别。由于人类行为中存在巨大的差异,因此我们收集了两个不同年龄段的许多参与者的数据。由于人类行为会随着时间的流逝而改变,因此我们还在一个月的时间内收集参与者的数据以捕捉时间漂移。我们假设移动活动识别可以受益于无监督的域适应算法。为了满足这一需求并检验这一假设,我们分析了整个人和整个时间的域适应性的性能。然后,我们通过对比度学习来增强无监督的域适应性,并在可用标签比例时进行弱监督。该数据集可在https://github.com/wsu-casas/smartwatch-data上找到
translated by 谷歌翻译
测试时间适应(TTA)是一个新兴范式,可解决培训和测试阶段之间的分布变化,而无需其他数据采集或标签成本;仅使用未标记的测试数据流进行连续模型适应。以前的TTA方案假设测试样本是独立的,并且分布相同(i.i.d.),即使它们在应用程序方案中通常在时间上相关(non-i.i.d。),例如自动驾驶。我们发现,在这种情况下,大多数现有的TTA方法急剧失败。由此激励,我们提出了一种新的测试时间适应方案,该方案对非I.I.D具有强大的态度。测试数据流。我们的新颖性主要是两倍:(a)纠正分布样本的归一化的实例感知批归归量表(IABN),以及(b)模拟I.I.D.的预测均衡储层采样(PBRS)。来自非i.i.d的数据流。以班级平衡的方式流式传输。我们对各种数据集的评估,包括现实世界非i.i.d。流,表明所提出的强大TTA不仅优于非i.i.d的最先进的TTA算法。设置,但也可以实现与I.I.D.下的这些算法相当的性能。假设。
translated by 谷歌翻译
Wearable sensor-based human activity recognition (HAR) has emerged as a principal research area and is utilized in a variety of applications. Recently, deep learning-based methods have achieved significant improvement in the HAR field with the development of human-computer interaction applications. However, they are limited to operating in a local neighborhood in the process of a standard convolution neural network, and correlations between different sensors on body positions are ignored. In addition, they still face significant challenging problems with performance degradation due to large gaps in the distribution of training and test data, and behavioral differences between subjects. In this work, we propose a novel Transformer-based Adversarial learning framework for human activity recognition using wearable sensors via Self-KnowledgE Distillation (TASKED), that accounts for individual sensor orientations and spatial and temporal features. The proposed method is capable of learning cross-domain embedding feature representations from multiple subjects datasets using adversarial learning and the maximum mean discrepancy (MMD) regularization to align the data distribution over multiple domains. In the proposed method, we adopt the teacher-free self-knowledge distillation to improve the stability of the training procedure and the performance of human activity recognition. Experimental results show that TASKED not only outperforms state-of-the-art methods on the four real-world public HAR datasets (alone or combined) but also improves the subject generalization effectively.
translated by 谷歌翻译
We demonstrate that self-learning techniques like entropy minimization and pseudo-labeling are simple and effective at improving performance of a deployed computer vision model under systematic domain shifts. We conduct a wide range of large-scale experiments and show consistent improvements irrespective of the model architecture, the pre-training technique or the type of distribution shift. At the same time, self-learning is simple to use in practice because it does not require knowledge or access to the original training data or scheme, is robust to hyperparameter choices, is straight-forward to implement and requires only a few adaptation epochs. This makes self-learning techniques highly attractive for any practitioner who applies machine learning algorithms in the real world. We present state-of-the-art adaptation results on CIFAR10-C (8.5% error), ImageNet-C (22.0% mCE), ImageNet-R (17.4% error) and ImageNet-A (14.8% error), theoretically study the dynamics of self-supervised adaptation methods and propose a new classification dataset (ImageNet-D) which is challenging even with adaptation.
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译
Deep learning has produced state-of-the-art results for a variety of tasks. While such approaches for supervised learning have performed well, they assume that training and testing data are drawn from the same distribution, which may not always be the case. As a complement to this challenge, single-source unsupervised domain adaptation can handle situations where a network is trained on labeled data from a source domain and unlabeled data from a related but different target domain with the goal of performing well at test-time on the target domain. Many single-source and typically homogeneous unsupervised deep domain adaptation approaches have thus been developed, combining the powerful, hierarchical representations from deep learning with domain adaptation to reduce reliance on potentially-costly target data labels. This survey will compare these approaches by examining alternative methods, the unique and common elements, results, and theoretical insights. We follow this with a look at application areas and open research directions.
translated by 谷歌翻译
持续的学习方法通​​过试图解决灾难性遗忘来帮助深度神经网络模型适应和逐步学习。但是,无论这些现有方法是否传统上应用于基于图像的任务,都具有与移动或嵌入式传感系统生成的顺序时间序列数据相同的疗效仍然是一个未解决的问题。为了解决这一空白,我们进行了第一项全面的经验研究,该研究量化了三个主要的持续学习方案的性能(即,在三个移动和嵌入式感应应用程序中的六个数据集中的三个主要的持续学习方案(即正规化,重播和重播)的性能。不同的学习复杂性。更具体地说,我们在Edge设备上实现了端到端连续学习框架。然后,我们研究了不同持续学习方法的性能,存储,计算成本和记忆足迹之间的普遍性,权衡。我们的发现表明,以示例性计划(例如ICARL)重播,即使在复杂的场景中,甚至在复杂的场景中都具有最佳的性能权衡,以牺牲一些存储空间(少数MB)来训练示例(1%至5%)。我们还首次证明,以有限的记忆预算进行连续学习,可行和实用。特别是,两种类型的移动设备和嵌入式设备的延迟表明,可以接受递增的学习时间(几秒钟-4分钟)和培训时间(1-75分钟),可以接受,因为嵌入式嵌入式时可能会在设备上进行培训设备正在充电,从而确保完整的数据隐私。最后,我们为希望将不断学习范式应用于移动传感任务的从业者提供了一些准则。
translated by 谷歌翻译
The ability to quickly and accurately identify covariate shift at test time is a critical and often overlooked component of safe machine learning systems deployed in high-risk domains. While methods exist for detecting when predictions should not be made on out-of-distribution test examples, identifying distributional level differences between training and test time can help determine when a model should be removed from the deployment setting and retrained. In this work, we define harmful covariate shift (HCS) as a change in distribution that may weaken the generalization of a predictive model. To detect HCS, we use the discordance between an ensemble of classifiers trained to agree on training data and disagree on test data. We derive a loss function for training this ensemble and show that the disagreement rate and entropy represent powerful discriminative statistics for HCS. Empirically, we demonstrate the ability of our method to detect harmful covariate shift with statistical certainty on a variety of high-dimensional datasets. Across numerous domains and modalities, we show state-of-the-art performance compared to existing methods, particularly when the number of observed test samples is small.
translated by 谷歌翻译
Semi-supervised learning (SSL) provides a powerful framework for leveraging unlabeled data when labels are limited or expensive to obtain. SSL algorithms based on deep neural networks have recently proven successful on standard benchmark tasks. However, we argue that these benchmarks fail to address many issues that SSL algorithms would face in real-world applications. After creating a unified reimplementation of various widely-used SSL techniques, we test them in a suite of experiments designed to address these issues. We find that the performance of simple baselines which do not use unlabeled data is often underreported, SSL methods differ in sensitivity to the amount of labeled and unlabeled data, and performance can degrade substantially when the unlabeled dataset contains out-ofdistribution examples. To help guide SSL research towards real-world applicability, we make our unified reimplemention and evaluation platform publicly available. 2 * Equal contribution 2 https://github.com/brain-research/realistic-ssl-evaluation 32nd Conference on Neural Information Processing Systems (NeurIPS 2018),
translated by 谷歌翻译
本文比较并对11种UDA验证方法进行排名。验证者估计模型的准确性,这使它们成为任何UDA火车测试管道的重要组成部分。我们对这些验证器进行排名,以指示其中哪些最有用的目的是选择最佳模型,检查点和超参数。此外,我们建议并比较新的有效验证器,并显着改进了现有验证器的版本。据我们所知,这项大规模的基准研究是UDA领域中的第一项。
translated by 谷歌翻译
脑电图(EEG)解码旨在识别基于非侵入性测量的脑活动的神经处理的感知,语义和认知含量。当应用于在静态,受控的实验室环境中获取的数据时,传统的EEG解码方法取得了适度的成功。然而,开放世界的环境是一个更现实的环境,在影响EEG录音的情况下,可以意外地出现,显着削弱了现有方法的鲁棒性。近年来,由于其在特征提取的卓越容量,深入学习(DL)被出现为潜在的解决方案。它克服了使用浅架构提取的“手工制作”功能或功能的限制,但通常需要大量的昂贵,专业标记的数据 - 并不总是可获得的。结合具有域特定知识的DL可能允许开发即使具有小样本数据,也可以开发用于解码大脑活动的鲁棒方法。虽然已经提出了各种DL方法来解决EEG解码中的一些挑战,但目前缺乏系统的教程概述,特别是对于开放世界应用程序。因此,本文为开放世界EEG解码提供了对DL方法的全面调查,并确定了有前途的研究方向,以激发现实世界应用中的脑电图解码的未来研究。
translated by 谷歌翻译
机器学习的最新进展表明,通过自我监督的学习获得的预训练表示形式可以通过小型培训数据实现高精度。与视觉和自然语言处理域不同,基于IMU的应用程序的预培训是具有挑战性的,因为只有少数公开可用的数据集具有足够的规模和多样性来学习可推广的表示。为了克服这个问题,我们提出了IMG2IMU,这是一种新颖的方法,可以适应从大规模图像到不同弹药的IMU感应任务的预训练表示。我们将传感器数据转换为可解释的频谱图,以便模型利用从视觉中获得的知识。此外,我们将对比度学习应用于我们旨在学习用于解释传感器数据的表示形式。我们对五个IMU感应任务的广泛评估表明,IMG2IMU始终优于基准,这说明视力知识可以纳入一些用于IMU感应任务的学习环境中。
translated by 谷歌翻译
TimeSeries Partitioning是大多数机器学习驱动的传感器的IOT应用程序的重要步骤。本文介绍了一种采样效率,鲁棒,时序分割模型和算法。我们表明,通过基于最大平均差异(MMD)的分割目标来学习特定于分割目标的表示,我们的算法可以鲁布布地检测不同应用程序的时间序列事件。我们的损耗功能允许我们推断是否从相同的分布(空假设)中绘制了连续的样本序列,并确定拒绝零假设的对之间的变化点(即,来自不同的分布)。我们展示了其在基于环境传感的活动识别的实际IOT部署中的适用性。此外,虽然文献中存在许多关于变更点检测的作品,但我们的模型明显更简单,匹配或优于最先进的方法。我们可以平均地在9-93秒内完全培训我们的模型,而在不同应用程序上的数据的差异很小。
translated by 谷歌翻译
最近,面部生物识别是对传统认证系统的方便替代的巨大关注。因此,检测恶意尝试已经发现具有重要意义,导致面部抗欺骗〜(FAS),即面部呈现攻击检测。与手工制作的功能相反,深度特色学习和技术已经承诺急剧增加FAS系统的准确性,解决了实现这种系统的真实应用的关键挑战。因此,处理更广泛的发展以及准确的模型的新研究区越来越多地引起了研究界和行业的关注。在本文中,我们为自2017年以来对与基于深度特征的FAS方法相关的文献综合调查。在这一主题上阐明,基于各种特征和学习方法的语义分类。此外,我们以时间顺序排列,其进化进展和评估标准(数据集内集和数据集互联集合中集)覆盖了FAS的主要公共数据集。最后,我们讨论了开放的研究挑战和未来方向。
translated by 谷歌翻译
我们提出了Parse,这是一种新颖的半监督结构,用于学习强大的脑电图表现以进行情感识别。为了减少大量未标记数据与标记数据有限的潜在分布不匹配,Parse使用成对表示对准。首先,我们的模型执行数据增强,然后标签猜测大量原始和增强的未标记数据。然后将其锐化的标签和标记数据的凸组合锐化。最后,进行表示对准和情感分类。为了严格测试我们的模型,我们将解析与我们实施并适应脑电图学习的几种最先进的半监督方法进行了比较。我们对四个基于公共EEG的情绪识别数据集,种子,种子IV,种子V和Amigos(价和唤醒)进行这些实验。该实验表明,我们提出的框架在种子,种子-IV和Amigos(Valence)中的标记样品有限的情况下,取得了总体最佳效果,同时接近种子V和Amigos中的总体最佳结果(达到第二好) (唤醒)。分析表明,我们的成对表示对齐方式通过减少未标记数据和标记数据之间的分布比对来大大提高性能,尤其是当每类仅1个样本被标记时。
translated by 谷歌翻译
由于其在多个工业应用领域的竞争性能,深度学习在我们的日常生活中起着越来越重要的作用。作为基于DL的系统的核心,深度神经网络会自动从精心收集和有组织的培训数据中学习知识,以获得预测看不见数据的标签的能力。与需要全面测试的传统软件系统类似,还需要仔细评估DNN,以确保受过训练的模型的质量满足需求。实际上,评估行业中DNN质量的事实上的标准是检查其在收集的标记测试数据集中的性能(准确性)。但是,准备这样的标记数据通常不容易部分,部分原因是标签工作巨大,即数据标记是劳动密集型的,尤其是每天有大量新的新传入的未标记数据。最近的研究表明,DNN的测试选择是一个有希望的方向,可以通过选择最小的代表性数据来标记并使用这些数据来评估模型来解决此问题。但是,它仍然需要人类的努力,不能自动。在本文中,我们提出了一种名为Aries的新技术,可以使用原始测试数据获得的信息估算新未标记数据的DNN的性能。我们技术背后的关键见解是,该模型在与决策边界具有相似距离的数据上应具有相似的预测准确性。我们对13种数据转换方法的技术进行了大规模评估。结果表明,我们技术的有用性是,白羊座的估计准确性仅为0.03%-2.60%(平均0.61%),从真实的准确性中差。此外,在大多数(128个)情况下,白羊座还优于最先进的选择标记方法。
translated by 谷歌翻译