最近,在推荐系统领域中,一个关键问题隐约可见 - 没有进行严格评估的有效基准 - 因此,这会导致不可再生的评估和不公平的比较。因此,我们从实践理论和实验的角度进行研究,目的是为严格的评估做出基准建议。关于理论研究,一系列影响整个评估链中建议性能的超级因素通过对2017 - 2020年在八个顶级会议上发表的141篇论文进行的详尽评价进行了系统的总结和分析。然后,我们将它们分类为独立于模型和模型依赖性的超因子,并相应地定义和讨论了不同的严格评估模式。在实验研究中,我们通过将这些超级因子整合以进行严格的评估来发布DaisyREC 2.0文库,从而进行了整体经验研究,以揭示不同超级效应器对建议性能的影响。在理论和实验研究的支持下,我们最终通过提出标准化程序并在六个数据集上的六个评估指标中提供10个最先进的方法来创建严格评估的基准,以作为以后研究的参考。总体而言,我们的工作阐明了建议评估中的问题,为严格的评估提供了潜在的解决方案,并为进一步调查提供了基础。
translated by 谷歌翻译
In recent years, deep neural networks have yielded immense success on speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks on recommender systems has received relatively less scrutiny. In this work, we strive to develop techniques based on neural networks to tackle the key problem in recommendation -collaborative filtering -on the basis of implicit feedback.Although some recent work has employed deep learning for recommendation, they primarily used it to model auxiliary information, such as textual descriptions of items and acoustic features of musics. When it comes to model the key factor in collaborative filtering -the interaction between user and item features, they still resorted to matrix factorization and applied an inner product on the latent features of users and items.By replacing the inner product with a neural architecture that can learn an arbitrary function from data, we present a general framework named NCF, short for Neural networkbased Collaborative Filtering. NCF is generic and can express and generalize matrix factorization under its framework. To supercharge NCF modelling with non-linearities, we propose to leverage a multi-layer perceptron to learn the user-item interaction function. Extensive experiments on two real-world datasets show significant improvements of our proposed NCF framework over the state-of-the-art methods. Empirical evidence shows that using deeper layers of neural networks offers better recommendation performance.
translated by 谷歌翻译
历史互动是推荐模型培训的默认选择,通常表现出高稀疏性,即大多数用户项目对都是未观察到的缺失数据。标准选择是将缺失的数据视为负训练样本,并估计用户项目对之间的相互作用以及观察到的相互作用。通过这种方式,在训练过程中不可避免地会误标记一些潜在的互动,这将损害模型的保真度,阻碍模型回忆起错误标签的项目,尤其是长尾尾。在这项工作中,我们从新的不确定性的新角度研究了标签的问题,该问题描述了缺失数据的固有随机性。随机性促使我们超越了相互作用的可能性,并接受了不确定性建模。为此,我们提出了一个新的不确定性不确定性建议(AUR)框架,该框架由新的不确定性估计器以及正常的推荐模型组成。根据核心不确定性理论,我们得出了一个新的建议目标来学习估计量。由于错误标签的机会反映了一对的潜力,因此AUR根据不确定性提出了建议,该建议被证明是为了改善较不受欢迎的项目的建议性能而不会牺牲整体性能。我们在三个代表性推荐模型上实例化AUR:来自主流模型体系结构的矩阵分解(MF),LightGCN和VAE。两个现实世界数据集的广泛结果验证了AUR W.R.T.的有效性。更好的建议结果,尤其是在长尾项目上。
translated by 谷歌翻译
隐式反馈的无处不是建立推荐系统不可或缺的反馈。但是,它实际上并没有反映用户的实际满意度。例如,在电子商务中,一大部分点击不转化为购买,许多购买结束了否定审查。因此,考虑隐性反馈中的不可避免的噪声是重要的。但是,建议的一点工作已经考虑了隐性反馈的嘈杂性。在这项工作中,我们探讨了向建议学习的识别隐含反馈的中心主题,包括培训和推论。通过观察正常推荐培训的过程,我们发现嘈杂的反馈通常在早期阶段中具有大的损失值。灵感来自这一观察,我们提出了一种新的培训策略,称为自适应去噪培训(ADT),其自适应地修剪了两个范式的嘈杂相互作用(即截断损失和重新减免)。此外,我们考虑额外的反馈(例如,评级)作为辅助信号,提出三种策略,将额外的反馈纳入ADT:FineTuning,预热训练和碰撞推断。我们在广泛使用的二进制交叉熵丢失上实例化了两个范式,并在三个代表推荐模型上测试它们。在三个基准测试中的广泛实验表明ADT在不使用额外反馈的情况下显着提高了正常培训的建议质量。此外,提出的三种策略用于使用额外反馈的主要原因是增强ADT的去噪能力。
translated by 谷歌翻译
随着深度学习技术扩展到现实世界推荐任务,已经开发出许多深度神经网络的协作滤波(CF)模型基于各种神经结构,例如多层的神经架构将用户项目交互项目投影到潜伏特征空间中Perceptron,自动编码器和图形神经网络。然而,大多数现有的协作过滤系统不充分设计用于处理缺失的数据。特别是,为了在训练阶段注入负信号,这些解决方案很大程度上依赖于未观察到的用户项交互,并且简单地将它们视为负实例,这带来了推荐性能下降。为了解决问题,我们开发了一个协作反射增强的AutoEncoder网络(Cranet),它能够探索从观察到和未观察的用户项交互的可转移知识。 Cranet的网络架构由具有反射接收器网络的集成结构和信息融合自动统计器模块形成,其推荐框架具有在互动和非互动项目上编码隐式用户的成对偏好的能力。另外,基于参数正规化的捆绑重量方案旨在对两级颅骨模型进行鲁棒联合训练。我们终于在对应于两个推荐任务的四个不同基准数据集上进行了实验验证了Cranet,以表明,与各种最先进的推荐技术相比,脱叠用户项交互的负信号提高了性能。我们的源代码可在https://github.com/akaxlh/cranet上获得。
translated by 谷歌翻译
为了成功推荐(SR)成功,最近的作品着重于设计有效的顺序编码器,融合侧面信息以及挖掘额外的积极的自我实施信号。在每个时间步骤中对负面项目进行采样的策略较少探索。由于用户在培训过程中的兴趣和模型更新的动态,因此考虑用户的非相互作用项目的随机抽样项目作为负面的项目可能是不明智的。结果,该模型将不准确地了解用户对项目的偏好。识别信息性负面因素是具有挑战性的,因为内容的负面项目与动态变化的兴趣和模型参数相关(并且抽样过程也应该是有效的)。为此,我们建议为SR(Genni)生成负样本(项目)。根据当前SR模型对项目的学习用户偏好,在每个时间步骤中都采样了负项目。提出了有效的实施,以进一步加速生成过程,使其可扩展到大规模推荐任务。在四个公共数据集上进行的广泛实验验证了为SR提供高质量的负样本的重要性,并证明了Genni的有效性和效率。
translated by 谷歌翻译
隐式反馈经常用于开发个性化的推荐服务,因为其无处不在和现实世界中的可访问性。为了有效地利用此类信息,大多数研究都采用成对排名方法对构建的培训三胞胎(用户,正面项目,负项目),并旨在区分每个用户的正面项目和负面项目。但是,这些方法中的大多数都同样对待所有训练三胞胎,这忽略了不同的正或负项目之间的微妙差异。另一方面,即使其他一些作品利用用户行为的辅助信息(例如,停留时间)来捕获这种微妙的差异,但很难获得这样的辅助信息。为了减轻上述问题,我们提出了一个名为Triplet重要性学习(TIL)的新型培训框架,该框架可以自适应地学习训练三胞胎的重要性得分。我们为重要性得分生成的两种策略设计了两种策略,并将整个过程作为双层优化,这不需要任何基于规则的设计。我们将提出的训练程序与基于图形神经网络(GNN)基于图形的推荐模型的几个矩阵分解(MF)集成在一起,证明了我们的框架的兼容性。通过使用与许多最先进方法的三个现实世界数据集进行比较,我们表明我们所提出的方法在top-k推荐方面的召回@k方面优于3-21 \%的最佳现有模型。
translated by 谷歌翻译
最近提出的协作度量学习(CML)范式由于其简单性和有效性引起了人们对推荐系统(RS)领域的广泛兴趣。通常,CML的现有文献在很大程度上取决于\ textit {负抽样}策略,以减轻成对计算的耗时负担。但是,在这项工作中,通过进行理论分析,我们发现负抽样会导致对概括误差的偏差估计。具体而言,我们表明,基于抽样的CML将在概括性结合中引入一个偏差项,该术语是由per-use \ textit {total方差}(TV)量化的,在负面采样和地面真相分布引起的分布之间。这表明,即使有足够大的训练数据,优化基于采样的CML损耗函数也不能确保小概括误差。此外,我们表明偏见术语将消失,而无需负面抽样策略。在此激励的情况下,我们提出了一种有效的替代方案,而没有对CML进行负面采样的cml,name \ textit {无抽样协作度量学习}(SFCML),以消除实际意义上的采样偏见。最后,超过七个基准数据集的全面实验表达了所提出的算法的优势。
translated by 谷歌翻译
Top-K建议是推荐系统中的一个基本任务,通常通过比较积极和负对对学习。对比损失(CL)是最近受到更多关注的对比学习的关键,我们发现它非常适合Top-K建议。但是,这是一个问题,即CL处理正面和阴性样本的重要性。一方面,CL面向一个正样品的不平衡问题和许多阴性样品。另一方面,稀疏的数据集中很少有稀疏项目应该强调他们的重要性。此外,其他重要问题是稀疏正项目仍然没有充分利用建议。因此,我们通过使用CL损耗功能同时使用多个正项目(或样本)来提出新的数据增强方法。因此,我们提出了一种基于多样的对比损失(MSCL)功能,通过平衡正面和负样本和数据增强的重要性来解决两个问题。基于图表卷积网络(GCN)方法,实验结果表明了MSCL的最先进的性能。所提出的MSCL很简单,可以在许多方法中应用。我们将在验收时发布GitHub上的代码。
translated by 谷歌翻译
点击率(CTR)预测是许多应用程序的关键任务,因为它的准确性对用户体验和平台收入有直接影响。近年来,CTR预测已在学术界和工业中广泛研究,导致各种各样的CTR预测模型。不幸的是,仍然缺乏标准化的基准和CTR预测研究的统一评估协议。这导致现有研究中的不可重复或甚至不一致的实验结果,这在很大程度上限制了他们研究的实用价值和潜在影响。在这项工作中,我们的目标是对CTR预测进行开放基准测试,并以可重复的方式表现不同模型的严格比较。为此,我们运行{超过7,000多个实验,总共超过12,000 GPU小时,在多个数据集设置上重新评估24个现有型号}。令人惊讶的是,我们的实验表明,具有足够的超参数搜索和模型调整,许多深层模型的差异比预期较小。结果还表明,在CTR预测的建模上取得实际进展确实是一个非常具有挑战性的研究任务。我们相信,我们的基准工作不仅可以让研究人员可以方便地衡量新型模型的有效性,而且还使他们与艺术的国家相当相提并论。我们公开发布了我们工作的基准工具,评估协议和实验环境,以促进该领域的可重复研究。
translated by 谷歌翻译
Learning vector representations (aka. embeddings) of users and items lies at the core of modern recommender systems. Ranging from early matrix factorization to recently emerged deep learning based methods, existing efforts typically obtain a user's (or an item's) embedding by mapping from pre-existing features that describe the user (or the item), such as ID and attributes. We argue that an inherent drawback of such methods is that, the collaborative signal, which is latent in user-item interactions, is not encoded in the embedding process. As such, the resultant embeddings may not be sufficient to capture the collaborative filtering effect.In this work, we propose to integrate the user-item interactionsmore specifically the bipartite graph structure -into the embedding process. We develop a new recommendation framework Neural Graph Collaborative Filtering (NGCF), which exploits the useritem graph structure by propagating embeddings on it. This leads to the expressive modeling of high-order connectivity in useritem graph, effectively injecting the collaborative signal into the embedding process in an explicit manner. We conduct extensive experiments on three public benchmarks, demonstrating significant improvements over several state-of-the-art models like HOP-Rec [40] and Collaborative Memory Network [5]. Further analysis verifies the importance of embedding propagation for learning better user and item representations, justifying the rationality and effectiveness of NGCF. Codes are available at https://github.com/ xiangwang1223/neural_graph_collaborative_filtering. CCS CONCEPTS• Information systems → Recommender systems. * In the version published in ACM Digital Library, we find some small bugs; the bugs do not change the comparison results and the empirical findings. In this latest version, we update and correct the experimental results (i.e., the preprocessing of Yelp2018 dataset and the ndcg metric). All updates are highlighted in footnotes.
translated by 谷歌翻译
Self-attentive transformer models have recently been shown to solve the next item recommendation task very efficiently. The learned attention weights capture sequential dynamics in user behavior and generalize well. Motivated by the special structure of learned parameter space, we question if it is possible to mimic it with an alternative and more lightweight approach. We develop a new tensor factorization-based model that ingrains the structural knowledge about sequential data within the learning process. We demonstrate how certain properties of a self-attention network can be reproduced with our approach based on special Hankel matrix representation. The resulting model has a shallow linear architecture and compares competitively to its neural counterpart.
translated by 谷歌翻译
尽管机器学习的其他领域越来越多地自动化,但设计高性能的推荐系统仍然需要高水平的人力努力。此外,最近的工作表明,现代推荐系统算法并不总是比调整良好的基线改进。一个自然的后续问题是:“我们如何为新数据集和性能指标选择正确的算法?”在这项工作中,我们首先要通过比较85个数据集和315个指标的18算法和100组超参数的大规模研究。我们发现,最好的算法和超参数高度依赖于数据集和性能指标,但是,每种算法的性能与数据集的各种元元功能之间也存在很强的相关性。在这些发现的激励下,我们创建了Reczilla,这是一种推荐系统的元学习方法,该方法使用模型来预测新的,看不见的数据集的最佳算法和超参数。通过使用比先前的工作更多的元培训数据,Reczilla可以大大降低面对新推荐系统应用时人类参与水平。我们不仅发布了我们的代码和预处理的Reczilla模型,而且还发布了所有原始的实验结果,因此从业者可以为其所需的性能指标训练Reczilla模型:https://github.com/naszilla/reczilla。
translated by 谷歌翻译
协作过滤(CF)被广泛用于学习用户和从观察到的交互中的项目的信息潜在表示。现有的基于CF的方法通常采用负面抽样来区分不同的项目。在大型数据集上进行负抽样的培训在计算上是昂贵的。此外,应在定义的分布下仔细地对负项目进行采样,以避免在训练数据集中选择观察到的正面项目。不可避免地,在测试集中,从训练数据集中采样的一些负面项目可能是正面的。在本文中,我们提出了一个自我监督的协作过滤框架(SEXTCF),该框架是专门设计的,用于具有隐式反馈的推荐方案。提出的SEXTCF框架简化了暹罗网络,可以轻松地应用于现有的基于深度学习的CF模型,我们称之为骨干网络。 SEXCF的主要思想是增强主链网络生成的输出嵌入,因为它不可避免地增加了用户/项目ID的原始输入。我们建议并研究三种输出扰动技术,可以应用于不同类型的骨干网络,包括传统CF模型和基于图的模型。该框架使学习用户和项目的信息表示无效样本的信息表示,并且对封装的骨干不可知。我们在四个数据集上进行了全面的实验,以表明我们的框架可以比以2 $ \ times $ -4 $ \ times $ $更快的训练速度实现更高的建议准确性。我们还表明,与自我监督的框架Buir相比,SEXCF平均可以提高准确性高达17.79%。
translated by 谷歌翻译
在推荐系统中,一个普遍的挑战是冷门问题,在系统中,相互作用非常有限。为了应对这一挑战,最近,许多作品将元优化的想法介绍到建议方案中,即学习仅通过过去的几个交互项目来学习用户偏好。核心想法是为所有用户学习全局共享的元启动参数,并分别为每个用户迅速调整其本地参数。他们的目的是在各种用户的偏好学习中得出一般知识,以便通过博学的先验和少量培训数据迅速适应未来的新用户。但是,以前的作品表明,推荐系统通常容易受到偏见和不公平的影响。尽管元学习成功地通过冷启动提高了推荐性能,但公平性问题在很大程度上被忽略了。在本文中,我们提出了一个名为Clover的全面的公平元学习框架,以确保元学习的推荐模型的公平性。我们系统地研究了三种公平性 - 个人公平,反事实公平和推荐系统中的群体公平,并建议通过多任务对抗学习方案满足所有三种类型。我们的框架提供了一种通用的培训范式,适用于不同的元学习推荐系统。我们证明了三叶草对三个现实世界数据集的代表性元学习用户偏好估计器的有效性。经验结果表明,三叶草可以实现全面的公平性,而不会恶化整体的冷淡建议性能。
translated by 谷歌翻译
许多现代的顺序推荐系统使用深层神经网络,可以有效地估计项目的相关性,但需要大量时间进行训练。慢速培训增加了费用,阻碍了产品开发时间表,并防止该模型定期更新以适应不断变化的用户偏好。培训这样的顺序模型涉及对过去的用户互动进行适当采样以创建现实的培训目标。现有的培训目标有局限性。例如,下一个项目预测永远不会将序列的开头用作学习目标,从而可能丢弃有价值的数据。另一方面,Bert4Rec使用的项目掩盖仅与顺序建议的目标无关。因此,它需要更多的时间来获得有效的模型。因此,我们提出了一个基于新颖的序列训练目标采样,以解决这两个局限性。我们将我们的方法应用于最近和最新的模型架构,例如Gru4Rec,Caser和Sasrec。我们表明,通过我们的方法增强的模型可以实现超过或非常接近bert4rec的状态的性能,但训练时间却少得多。
translated by 谷歌翻译
共享符合跨域顺序推荐(SCSR)是一项新兴而又具有挑战性的任务,在顺序建议中同时考虑共享符号和跨域特征。 SCSR上的现有作品主要基于复发性神经网络(RNN)和图神经网络(GNN),但他们忽略了一个事实,尽管多个用户共享一个帐户,但一次主要由一个用户占用。这一观察结果促使我们通过专注于其最近的行为来学习更准确的用户特定帐户表示。此外,尽管现有的作品降低了较低的权重与无关紧要的相互作用,但它们仍可能稀释域信息并阻碍跨域建议。为了解决上述问题,我们提出了一种基于增强学习的解决方案,即RL-ISN,该解决方案由基本的跨域推荐剂和基于强化的学习域滤波器组成。具体而言,要在“共享”方案中对帐户表示形式进行建模,基本推荐人首先将用户作为潜在用户的混合行为群,然后利用注意力模型在上面进行用户身份识别。为了减少无关域信息的影响,我们将域过滤器作为层次强化学习任务,在该任务中,使用高级任务来决定是否修改整个转移的序列进一步执行任务以确定是否删除其中的每个交互。为了评估解决方案的性能,我们对两个现实世界数据集进行了广泛的实验,并且实验结果证明了与最先进的建议方法相比,我们的RL-ISN方法的优越性。
translated by 谷歌翻译
我们研究了数据集采样策略对推荐算法的排名性能的实际后果。通常在较大数据集的样本上进行培训和评估推荐系统。样品通常以幼稚或ad-hoc时尚服用:例如通过随机抽样数据集或通过选择具有许多交互的用户或项目。正如我们所示,常用的数据采样方案可能对算法性能产生重大后果。在此观察中,本文提出了三个主要贡献:(1)表征采样对算法性能的影响,就算法和数据集特征(例如稀疏性特征,顺序动态等); (2)设计SVP-CF,这是一种数据特定的采样策略,旨在保留采样后模型的相对性能,特别适用于长尾交互数据; (3)开发Oracle,数据Genie,它可以提出最有可能为给定数据集保留模型性能的采样方案。 Data-Genie的主要好处是它将允许推荐系统从业者快速原型并比较各种方法,同时保持对算法将保留算法性能,一旦算法在完整数据上进行了验证并部署。详细实验表明,使用数据Genie,我们可以丢弃比具有相同性能水平的采样策略更多的数据。
translated by 谷歌翻译
为了减轻传统推荐系统(RSS)的数据稀疏和冷启动问题,将知识图(KGS)纳入补充辅助信息,最近引起了相当大的关注。然而,简单地整合了基于KG的RS模型的KGS,这不一定是提高推荐性能的保证,甚至可能削弱整体模型能力。这是因为这些KG的构建与历史用户项相互作用的集合无关;因此,这些KG的信息可能并不总是有助于推荐给所有用户。在本文中,我们提出了具有个性化推荐的协作指导的细心知识意识的图表卷积网络(CG-KGR)。 CG-KGR是一种新颖的知识意识推荐模型,通过我们提出的协作指导机制,可以实现高度和相干的KG和用户项目交互的学习。具体而言,CG-KGR首先封装与交互式信息摘要的历史相互作用。然后CG-kgr利用它作为提取kgs的信息的指导,最终提供更精确的个性化推荐。我们在两个推荐任务中对四个现实数据集进行了广泛的实验,即TOP-K推荐和点击率(CTR)预测。实验结果表明,CG-KGR模型在Top-K推荐的召回度量方面,最近最初的最先进模型明显优于1.4-27.0%。
translated by 谷歌翻译
建模用户从历史行为中的动态偏好在于现代推荐系统的核心。由于用户兴趣的多样性,最近的进步建议多功能网络将历史行为编码为多个兴趣向量。在实际情况下,通常会一起检索相应的捕获兴趣项目,以获取曝光并收集到培训数据中,从而产生兴趣之间的依赖性。不幸的是,多息网络可能错误地集中在被捕获的利益之间的微妙依赖性上。被这些依赖性误导了,捕获了无关的利益和目标之间的虚假相关性,从而导致训练和测试分布不匹配时预测结果不稳定。在本文中,我们介绍了广泛使用的Hilbert-Schmidt独立标准(HSIC)来衡量被捕获的利益之间的独立性程度,并经验表明,HSIC的持续增加可能会损害模型性能。基于此,我们提出了一个新颖的多息网络,称为深稳定的多功能学习(Desmil),该网络试图通过学习权重以训练样本的学习权重消除捕获的兴趣中微妙的依赖性的影响因果关系。我们对公共建议数据集,大规模工业数据集和合成数据集进行了广泛的实验,这些数据集模拟了分布数据的数据集。实验结果表明,我们提出的Desmil的表现优于最先进的模型。此外,我们还进行了全面的模型分析,以揭示Desmil在一定程度上工作的原因。
translated by 谷歌翻译