基于学习的视觉自我运动估计是有希望的,但尚未准备好在现实世界中浏览敏捷的移动机器人。在本文中,我们提出了Cuahn-Vio,这是一款适用于配备了向下式摄像头的微型航空车(MAVS)的强大而有效的单眼视觉惯性镜(VIO)。视觉前端是一个内容和不确定性的同型同构网络(CUAHN),它对非主体摄影图像内容和网络预测的故障案例非常有力。它不仅可以预测截然变换,还可以估计其不确定性。培训是自学的,因此它不需要通常难以获得的地面真理。该网络具有良好的概括,可以在不进行微调的情况下在新环境中部署“插件”。轻巧的扩展卡尔曼过滤器(EKF)用作VIO后端,并利用网络中的平均预测和方差估计进行视觉测量更新。 Cuahn-Vio在高速公共数据集上进行了评估,并显示出与最先进(SOTA)VIO方法的竞争精度。由于运动模糊,低网络推理时间(〜23ms)和稳定的处理延迟(〜26ms),Cuahn-Vio成功运行了NVIDIA JETSON TX2嵌入式处理器,以导航快速自动驾驶MAV。
translated by 谷歌翻译
作为许多自主驾驶和机器人活动的基本组成部分,如自我运动估计,障碍避免和场景理解,单眼深度估计(MDE)引起了计算机视觉和机器人社区的极大关注。在过去的几十年中,已经开发了大量方法。然而,据我们所知,对MDE没有全面调查。本文旨在通过审查1970年至2021年之间发布的197个相关条款来弥补这一差距。特别是,我们为涵盖各种方法的MDE提供了全面的调查,介绍了流行的绩效评估指标并汇总公开的数据集。我们还总结了一些代表方法的可用开源实现,并比较了他们的表演。此外,我们在一些重要的机器人任务中审查了MDE的应用。最后,我们通过展示一些有希望的未来研究方向来结束本文。预计本调查有助于读者浏览该研究领域。
translated by 谷歌翻译
现代计算机视觉已超越了互联网照片集的领域,并进入了物理世界,通过非结构化的环境引导配备摄像头的机器人和自动驾驶汽车。为了使这些体现的代理与现实世界对象相互作用,相机越来越多地用作深度传感器,重建了各种下游推理任务的环境。机器学习辅助的深度感知或深度估计会预测图像中每个像素的距离。尽管已经在深入估算中取得了令人印象深刻的进步,但仍然存在重大挑战:(1)地面真相深度标签很难大规模收集,(2)通常认为相机信息是已知的,但通常是不可靠的,并且(3)限制性摄像机假设很常见,即使在实践中使用了各种各样的相机类型和镜头。在本论文中,我们专注于放松这些假设,并描述将相机变成真正通用深度传感器的最终目标的贡献。
translated by 谷歌翻译
A monocular visual-inertial system (VINS), consisting of a camera and a low-cost inertial measurement unit (IMU), forms the minimum sensor suite for metric six degreesof-freedom (DOF) state estimation. However, the lack of direct distance measurement poses significant challenges in terms of IMU processing, estimator initialization, extrinsic calibration, and nonlinear optimization. In this work, we present VINS-Mono: a robust and versatile monocular visual-inertial state estimator. Our approach starts with a robust procedure for estimator initialization and failure recovery. A tightly-coupled, nonlinear optimization-based method is used to obtain high accuracy visual-inertial odometry by fusing pre-integrated IMU measurements and feature observations. A loop detection module, in combination with our tightly-coupled formulation, enables relocalization with minimum computation overhead. We additionally perform four degrees-of-freedom pose graph optimization to enforce global consistency. We validate the performance of our system on public datasets and real-world experiments and compare against other state-of-the-art algorithms. We also perform onboard closed-loop autonomous flight on the MAV platform and port the algorithm to an iOS-based demonstration. We highlight that the proposed work is a reliable, complete, and versatile system that is applicable for different applications that require high accuracy localization. We open source our implementations for both PCs 1 and iOS mobile devices 2 .
translated by 谷歌翻译
在本文中,通过以自我监督的方式将基于几何的方法纳入深度学习架构来实现强大的视觉测量(VO)的基本问题。通常,基于纯几何的算法与特征点提取和匹配中的深度学习不那么稳健,但由于其成熟的几何理论,在自我运动估计中表现良好。在这项工作中,首先提出了一种新颖的光学流量网络(PANET)内置于位置感知机构。然后,提出了一种在没有典型网络的情况下共同估计深度,光学流动和自我运动来学习自我运动的新系统。所提出的系统的关键组件是一种改进的束调节模块,其包含多个采样,初始化的自我运动,动态阻尼因子调整和Jacobi矩阵加权。另外,新颖的相对光度损耗函数先进以提高深度估计精度。该实验表明,所提出的系统在基于基于基于基于基于基于基于基于学习的基于学习的方法之间的深度,流量和VO估计方面不仅优于其他最先进的方法,而且与几何形状相比,也显着提高了鲁棒性 - 基于,基于学习和混合VO系统。进一步的实验表明,我们的模型在挑战室内(TMU-RGBD)和室外(KAIST)场景中实现了出色的泛化能力和性能。
translated by 谷歌翻译
对于深度学习算法来量化其输出不确定性来满足可靠性约束并提供准确的结果,这一直至关重要。由于后一类任务的标准化和高度更加直接的标准输出,回归的不确定性估计比分类更少。但是,在计算机视觉中的各种应用中遇到了回归问题。我们提出了SLURP,通过侧学习者进行了一种副学习者的通用方法,该侧学习者利用了主要任务模型生成的输出和中间表示。我们在计算机视觉中的两个关键回归任务中测试SLURP:单眼深度和光学流量估计。另外,我们进行详尽的基准,包括转移到不同的数据集并添加梯度噪声。结果表明,我们的提案是通用的,随时适用于各种回归问题,并且对现有解决方案具有低计算成本。
translated by 谷歌翻译
结合同时定位和映射(SLAM)估计和动态场景建模可以高效地在动态环境中获得机器人自主权。机器人路径规划和障碍避免任务依赖于场景中动态对象运动的准确估计。本文介绍了VDO-SLAM,这是一种强大的视觉动态对象感知SLAM系统,用于利用语义信息,使得能够在场景中进行准确的运动估计和跟踪动态刚性物体,而无需任何先前的物体形状或几何模型的知识。所提出的方法识别和跟踪环境中的动态对象和静态结构,并将这些信息集成到统一的SLAM框架中。这导致机器人轨迹的高度准确估计和对象的全部SE(3)运动以及环境的时空地图。该系统能够从对象的SE(3)运动中提取线性速度估计,为复杂的动态环境中的导航提供重要功能。我们展示了所提出的系统对许多真实室内和室外数据集的性能,结果表明了对最先进的算法的一致和实质性的改进。可以使用源代码的开源版本。
translated by 谷歌翻译
Photometric differences are widely used as supervision signals to train neural networks for estimating depth and camera pose from unlabeled monocular videos. However, this approach is detrimental for model optimization because occlusions and moving objects in a scene violate the underlying static scenario assumption. In addition, pixels in textureless regions or less discriminative pixels hinder model training. To solve these problems, in this paper, we deal with moving objects and occlusions utilizing the difference of the flow fields and depth structure generated by affine transformation and view synthesis, respectively. Secondly, we mitigate the effect of textureless regions on model optimization by measuring differences between features with more semantic and contextual information without adding networks. In addition, although the bidirectionality component is used in each sub-objective function, a pair of images are reasoned about only once, which helps reduce overhead. Extensive experiments and visual analysis demonstrate the effectiveness of the proposed method, which outperform existing state-of-the-art self-supervised methods under the same conditions and without introducing additional auxiliary information.
translated by 谷歌翻译
不确定性量化对于机器人感知至关重要,因为过度自信或点估计人员可以导致环境和机器人侵犯和损害。在本文中,我们评估了单视图监督深度学习中的不确定量化的可扩展方法,特别是MC辍学和深度集成。特别是对于MC辍学,我们探讨了阵列在架构中不同级别的效果。我们表明,在编码器的所有层中添加丢失会带来比文献中的其他变化更好的结果。此配置类似地执行与Deep Ensembles具有更低的内存占用,这是相关的简单。最后,我们探讨了伪RGBD ICP的深度不确定性,并展示其估计具有实际规模的准确的双视图相对运动的可能性。
translated by 谷歌翻译
我们提出了场景运动的新颖双流表示,将光流分​​解为由摄像机运动引起的静态流场和另一个由场景中对象的运动引起的动态流场。基于此表示形式,我们提出了一个动态的大满贯,称为Deflowslam,它利用图像中的静态和动态像素来求解相机的姿势,而不是像其他动态SLAM系统一样简单地使用静态背景像素。我们提出了一个动态更新模块,以一种自我监督的方式训练我们的Deflowslam,其中密集的束调节层采用估计的静态流场和由动态掩码控制的权重,并输出优化的静态流动场的残差,相机姿势的残差,和反度。静态和动态流场是通过将当前图像翘曲到相邻图像来估计的,并且可以通过将两个字段求和来获得光流。广泛的实验表明,在静态场景和动态场景中,Deflowslam可以很好地推广到静态和动态场景,因为它表现出与静态和动态较小的场景中最先进的Droid-Slam相当的性能,同时在高度动态的环境中表现出明显优于Droid-Slam。代码和数据可在项目网页上找到:\ urlstyle {tt} \ textColor {url_color} {\ url {https://zju3dv.github.io/deflowslam/}}}。
translated by 谷歌翻译
事件摄像机是运动激活的传感器,可捕获像素级照明的变化,而不是具有固定帧速率的强度图像。与标准摄像机相比,它可以在高速运动和高动态范围场景中提供可靠的视觉感知。但是,当相机和场景之间的相对运动受到限制时,例如在静态状态下,事件摄像机仅输出一点信息甚至噪音。尽管标准相机可以在大多数情况下,尤其是在良好的照明条件下提供丰富的感知信息。这两个相机完全是互补的。在本文中,我们提出了一种具有鲁棒性,高智能和实时优化的基于事件的视觉惯性镜(VIO)方法,具有事件角度,基于线的事件功能和基于点的图像功能。提出的方法旨在利用人为场景中的自然场景和基于线路的功能中的基于点的功能,以通过设计良好设计的功能管理提供更多其他结构或约束信息。公共基准数据集中的实验表明,与基于图像或基于事件的VIO相比,我们的方法可以实现卓越的性能。最后,我们使用我们的方法演示了机上闭环自动驾驶四极管飞行和大规模室外实验。评估的视频在我们的项目网站上介绍:https://b23.tv/oe3qm6j
translated by 谷歌翻译
在本文中,我们串联串联一个实时单手抄语和密集的测绘框架。对于姿势估计,串联基于关键帧的滑动窗口执行光度束调整。为了增加稳健性,我们提出了一种新颖的跟踪前端,使用从全局模型中呈现的深度图来执行密集的直接图像对齐,该模型从密集的深度预测逐渐构建。为了预测密集的深度映射,我们提出了通过分层构造具有自适应视图聚合的3D成本卷来平衡关键帧之间的不同立体声基线的3D成本卷来使用整个活动密钥帧窗口的级联视图 - 聚合MVSNet(CVA-MVSNET)。最后,将预测的深度映射融合到表示为截短的符号距离函数(TSDF)体素网格的一致的全局映射中。我们的实验结果表明,在相机跟踪方面,串联优于其他最先进的传统和学习的单眼视觉径管(VO)方法。此外,串联示出了最先进的实时3D重建性能。
translated by 谷歌翻译
视觉惯性进程(VIO)是当今大多数AR/VR和自主机器人系统的姿势估计主链,无论是学术界和工业的。但是,这些系统对关键参数的初始化高度敏感,例如传感器偏见,重力方向和度量标准。在实际场景中,很少满足高parallax或可变加速度假设(例如,悬停空中机器人,智能手机AR用户不使用电话打手机的智能手机AR),经典的视觉惯性初始化配方通常会变得不良条件和/或未能有意义地融合。在本文中,我们专门针对这些低兴奋的场景针对野生用法至关重要的视觉惯性初始化。我们建议通过将新的基于学习的测量作为高级输入来规避经典视觉惯性结构(SFM)初始化的局限性。我们利用学到的单眼深度图像(单深度)来限制特征的相对深度,并通过共同优化其尺度和偏移来将单深度升级到度量标尺。我们的实验显示出与视觉惯性初始化的经典配方相比,问题条件有显着改善,并且相对于公共基准的最先进,尤其是在低兴奋的情况下,相对于最先进的表现,具有显着的准确性和鲁棒性提高。我们进一步将这种改进扩展到现有的探射系统中的实现,以说明我们改进的初始化方法对产生跟踪轨迹的影响。
translated by 谷歌翻译
Event cameras that asynchronously output low-latency event streams provide great opportunities for state estimation under challenging situations. Despite event-based visual odometry having been extensively studied in recent years, most of them are based on monocular and few research on stereo event vision. In this paper, we present ESVIO, the first event-based stereo visual-inertial odometry, which leverages the complementary advantages of event streams, standard images and inertial measurements. Our proposed pipeline achieves temporal tracking and instantaneous matching between consecutive stereo event streams, thereby obtaining robust state estimation. In addition, the motion compensation method is designed to emphasize the edge of scenes by warping each event to reference moments with IMU and ESVIO back-end. We validate that both ESIO (purely event-based) and ESVIO (event with image-aided) have superior performance compared with other image-based and event-based baseline methods on public and self-collected datasets. Furthermore, we use our pipeline to perform onboard quadrotor flights under low-light environments. A real-world large-scale experiment is also conducted to demonstrate long-term effectiveness. We highlight that this work is a real-time, accurate system that is aimed at robust state estimation under challenging environments.
translated by 谷歌翻译
在接受高质量的地面真相(如LiDAR数据)培训时,监督的学习深度估计方法可以实现良好的性能。但是,LIDAR只能生成稀疏的3D地图,从而导致信息丢失。每个像素获得高质量的地面深度数据很难获取。为了克服这一限制,我们提出了一种新颖的方法,将有前途的平面和视差几何管道与深度信息与U-NET监督学习网络相结合的结构信息结合在一起,与现有的基于流行的学习方法相比,这会导致定量和定性的改进。特别是,该模型在两个大规模且具有挑战性的数据集上进行了评估:Kitti Vision Benchmark和CityScapes数据集,并在相对错误方面取得了最佳性能。与纯深度监督模型相比,我们的模型在薄物体和边缘的深度预测上具有令人印象深刻的性能,并且与结构预测基线相比,我们的模型的性能更加强大。
translated by 谷歌翻译
当不可能使用深度传感器时,估计与物体的距离对于自动驾驶至关重要。在这种情况下,必须从车载安装的RGB摄像机估算距离,这是一项复杂的任务,尤其是在天然室外景观等环境中。在本文中,我们提出了一种名为M4Depth的新方法,以进行深度估计。首先,我们建立了两个连续帧的深度与视觉差异之间的徒关系,并展示了如何利用它以执行运动不变的像素深度估计。然后,我们详细介绍了基于金字塔卷积神经网络体系结构的M4DEPTH,每个级别通过使用两个定制的成本量来完善输入差异图估计。我们使用这些成本量来利用运动施加的视觉时空约束,并为各种场景增强网络的稳健性。我们在公共数据集上基准了我们的测试和概括模式的方法,其中包含在各种室外场景中记录的合成相机轨迹。结果表明,我们的网络在这些数据集上的表现优于最新技术,同时在标准深度估计基准上表现良好。我们方法的代码可在https://github.com/michael-fonder/m4depth上公开获得。
translated by 谷歌翻译
我们提供了一种基于因子图优化的多摄像性视觉惯性内径系统,该系统通过同时使用所有相机估计运动,同时保留固定的整体特征预算。我们专注于在挑战环境中的运动跟踪,例如狭窄的走廊,具有侵略性动作的黑暗空间,突然的照明变化。这些方案导致传统的单眼或立体声测量失败。在理论上,使用额外的相机跟踪运动,但它会导致额外的复杂性和计算负担。为了克服这些挑战,我们介绍了两种新的方法来改善多相机特征跟踪。首先,除了从一体相机移动到另一个相机时,我们连续地跟踪特征的代替跟踪特征。这提高了准确性并实现了更紧凑的因子图表示。其次,我们选择跨摄像机的跟踪功能的固定预算,以降低反向结束优化时间。我们发现,使用较小的信息性功能可以保持相同的跟踪精度。我们所提出的方法使用由IMU和四个摄像机(前立体网和两个侧面)组成的硬件同步装置进行广泛测试,包括:地下矿,大型开放空间,以及带狭窄楼梯和走廊的建筑室内设计。与立体声最新的视觉惯性内径测量方法相比,我们的方法将漂移率,相对姿势误差,高达80%的翻译和旋转39%降低。
translated by 谷歌翻译
使用FASS-MVS,我们提出了一种具有表面感知半全局匹配的快速多视图立体声的方法,其允许从UAV捕获的单眼航空视频数据中快速深度和正常地图估计。反过来,由FASS-MVS估计的数据促进在线3D映射,这意味着在获取或接收到图像数据时立即和递增地生成场景的3D地图。 FASS-MVS由分层处理方案组成,其中深度和正常数据以及相应的置信度分数以粗略的方式估计,允许有效地处理由倾斜图像所固有的大型场景深度低无人机。实际深度估计采用用于致密多图像匹配的平面扫描算法,以产生深度假设,通过表面感知半全局优化来提取实际深度图,从而减少了SGM的正平行偏压。给定估计的深度图,然后通过将深度图映射到点云中并计算狭窄的本地邻域内的普通向量来计算像素 - 方面正常信息。在彻底的定量和消融研究中,我们表明,由FASS-MV计算的3D信息的精度接近离线多视图立体声的最先进方法,误差甚至没有一个幅度而不是科麦。然而,同时,FASS-MVS的平均运行时间估计单个深度和正常地图的距离小于ColMAP的14%,允许在1-中执行全高清图像的在线和增量处理2 Hz。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
近年来,尤其是在户外环境中,自我监督的单眼深度估计已取得了重大进展。但是,在大多数现有数据被手持设备捕获的室内场景中,深度预测结果无法满足。与室外环境相比,使用自我监督的方法估算室内环境的单眼视频深度,导致了两个额外的挑战:(i)室内视频序列的深度范围在不同的框架上有很大变化,使深度很难进行。网络以促进培训的一致深度线索; (ii)用手持设备记录的室内序列通常包含更多的旋转运动,这使姿势网络难以预测准确的相对摄像头姿势。在这项工作中,我们通过对这些挑战进行特殊考虑并巩固了一系列良好实践,以提高自我监督的单眼深度估计室内环境的表现,从而提出了一种新颖的框架单声道++。首先,提出了具有基于变压器的比例回归网络的深度分解模块,以明确估算全局深度尺度因子,预测的比例因子可以指示最大深度值。其次,我们不像以前的方法那样使用单阶段的姿势估计策略,而是建议利用残留姿势估计模块来估计相对摄像机在连续迭代的跨帧中构成。第三,为了为我们的残留姿势估计模块纳入广泛的坐标指南,我们建议直接在输入上执行坐标卷积编码,以实现姿势网络。提出的方法在各种基准室内数据集(即Euroc Mav,Nyuv2,扫描仪和7片)上进行了验证,证明了最先进的性能。
translated by 谷歌翻译