This paper investigates strategies that defend against adversarial-example attacks on image-classification systems by transforming the inputs before feeding them to the system. Specifically, we study applying image transformations such as bit-depth reduction, JPEG compression, total variance minimization, and image quilting before feeding the image to a convolutional network classifier. Our experiments on ImageNet show that total variance minimization and image quilting are very effective defenses in practice, in particular, when the network is trained on transformed images. The strength of those defenses lies in their non-differentiable nature and their inherent randomness, which makes it difficult for an adversary to circumvent the defenses. Our best defense eliminates 60% of strong gray-box and 90% of strong black-box attacks by a variety of major attack methods.
translated by 谷歌翻译
Although deep neural networks (DNNs) have achieved great success in many tasks, they can often be fooled by adversarial examples that are generated by adding small but purposeful distortions to natural examples. Previous studies to defend against adversarial examples mostly focused on refining the DNN models, but have either shown limited success or required expensive computation. We propose a new strategy, feature squeezing, that can be used to harden DNN models by detecting adversarial examples. Feature squeezing reduces the search space available to an adversary by coalescing samples that correspond to many different feature vectors in the original space into a single sample. By comparing a DNN model's prediction on the original input with that on squeezed inputs, feature squeezing detects adversarial examples with high accuracy and few false positives.This paper explores two feature squeezing methods: reducing the color bit depth of each pixel and spatial smoothing. These simple strategies are inexpensive and complementary to other defenses, and can be combined in a joint detection framework to achieve high detection rates against state-of-the-art attacks.
translated by 谷歌翻译
We identify obfuscated gradients, a kind of gradient masking, as a phenomenon that leads to a false sense of security in defenses against adversarial examples. While defenses that cause obfuscated gradients appear to defeat iterative optimizationbased attacks, we find defenses relying on this effect can be circumvented. We describe characteristic behaviors of defenses exhibiting the effect, and for each of the three types of obfuscated gradients we discover, we develop attack techniques to overcome it. In a case study, examining noncertified white-box-secure defenses at ICLR 2018, we find obfuscated gradients are a common occurrence, with 7 of 9 defenses relying on obfuscated gradients. Our new attacks successfully circumvent 6 completely, and 1 partially, in the original threat model each paper considers.
translated by 谷歌翻译
Convolutional neural networks have demonstrated high accuracy on various tasks in recent years. However, they are extremely vulnerable to adversarial examples. For example, imperceptible perturbations added to clean images can cause convolutional neural networks to fail. In this paper, we propose to utilize randomization at inference time to mitigate adversarial effects. Specifically, we use two randomization operations: random resizing, which resizes the input images to a random size, and random padding, which pads zeros around the input images in a random manner. Extensive experiments demonstrate that the proposed randomization method is very effective at defending against both single-step and iterative attacks. Our method provides the following advantages: 1) no additional training or fine-tuning, 2) very few additional computations, 3) compatible with other adversarial defense methods. By combining the proposed randomization method with an adversarially trained model, it achieves a normalized score of 0.924 (ranked No.2 among 107 defense teams) in the NIPS 2017 adversarial examples defense challenge, which is far better than using adversarial training alone with a normalized score of 0.773 (ranked No.56). The code is public available at https: //github.com/cihangxie/NIPS2017_adv_challenge_defense.
translated by 谷歌翻译
The authors thank Nicholas Carlini (UC Berkeley) and Dimitris Tsipras (MIT) for feedback to improve the survey quality. We also acknowledge X. Huang (Uni. Liverpool), K. R. Reddy (IISC), E. Valle (UNICAMP), Y. Yoo (CLAIR) and others for providing pointers to make the survey more comprehensive.
translated by 谷歌翻译
Adversarial examples are perturbed inputs designed to fool machine learning models. Adversarial training injects such examples into training data to increase robustness. To scale this technique to large datasets, perturbations are crafted using fast single-step methods that maximize a linear approximation of the model's loss. We show that this form of adversarial training converges to a degenerate global minimum, wherein small curvature artifacts near the data points obfuscate a linear approximation of the loss. The model thus learns to generate weak perturbations, rather than defend against strong ones. As a result, we find that adversarial training remains vulnerable to black-box attacks, where we transfer perturbations computed on undefended models, as well as to a powerful novel single-step attack that escapes the non-smooth vicinity of the input data via a small random step. We further introduce Ensemble Adversarial Training, a technique that augments training data with perturbations transferred from other models. On ImageNet, Ensemble Adversarial Training yields models with stronger robustness to blackbox attacks. In particular, our most robust model won the first round of the NIPS 2017 competition on Defenses against Adversarial Attacks (Kurakin et al., 2017c). However, subsequent work found that more elaborate black-box attacks could significantly enhance transferability and reduce the accuracy of our models.
translated by 谷歌翻译
Adaptive attacks have (rightfully) become the de facto standard for evaluating defenses to adversarial examples. We find, however, that typical adaptive evaluations are incomplete. We demonstrate that thirteen defenses recently published at ICLR, ICML and NeurIPS-and which illustrate a diverse set of defense strategies-can be circumvented despite attempting to perform evaluations using adaptive attacks. While prior evaluation papers focused mainly on the end result-showing that a defense was ineffective-this paper focuses on laying out the methodology and the approach necessary to perform an adaptive attack. Some of our attack strategies are generalizable, but no single strategy would have been sufficient for all defenses. This underlines our key message that adaptive attacks cannot be automated and always require careful and appropriate tuning to a given defense. We hope that these analyses will serve as guidance on how to properly perform adaptive attacks against defenses to adversarial examples, and thus will allow the community to make further progress in building more robust models.
translated by 谷歌翻译
深度卷积神经网络可以准确地分类各种自然图像,但是在设计时可能很容易被欺骗,图像中嵌入了不可察觉的扰动。在本文中,我们设计了一种多管齐下的培训,输入转换和图像集成系统,该系统是攻击不可知论的,不容易估计。我们的系统结合了两个新型功能。第一个是一个转换层,该转换层从集体级训练数据示例中计算级别的多项式内核,并且迭代更新在推理时间上基于其特征内核差异的输入图像副本,以创建转换后的输入集合。第二个是一个分类系统,该系统将未防御网络的预测结合在一起,对被过滤图像的合奏进行了硬投票。我们在CIFAR10数据集上的评估显示,我们的系统提高了未防御性网络在不同距离指标下的各种有界和无限的白色盒子攻击的鲁棒性,同时牺牲了清洁图像的精度很小。反对自适应的全知攻击者创建端到端攻击,我们的系统成功地增强了对抗训练的网络的现有鲁棒性,为此,我们的方法最有效地应用了。
translated by 谷歌翻译
Neural networks are vulnerable to adversarial examples, which poses a threat to their application in security sensitive systems. We propose high-level representation guided denoiser (HGD) as a defense for image classification. Standard denoiser suffers from the error amplification effect, in which small residual adversarial noise is progressively amplified and leads to wrong classifications. HGD overcomes this problem by using a loss function defined as the difference between the target model's outputs activated by the clean image and denoised image. Compared with ensemble adversarial training which is the state-of-the-art defending method on large images, HGD has three advantages. First, with HGD as a defense, the target model is more robust to either white-box or black-box adversarial attacks. Second, HGD can be trained on a small subset of the images and generalizes well to other images and unseen classes. Third, HGD can be transferred to defend models other than the one guiding it. In NIPS competition on defense against adversarial attacks, our HGD solution won the first place and outperformed other models by a large margin. 1 * Equal contribution.
translated by 谷歌翻译
Though CNNs have achieved the state-of-the-art performance on various vision tasks, they are vulnerable to adversarial examples -crafted by adding human-imperceptible perturbations to clean images. However, most of the existing adversarial attacks only achieve relatively low success rates under the challenging black-box setting, where the attackers have no knowledge of the model structure and parameters. To this end, we propose to improve the transferability of adversarial examples by creating diverse input patterns. Instead of only using the original images to generate adversarial examples, our method applies random transformations to the input images at each iteration. Extensive experiments on ImageNet show that the proposed attack method can generate adversarial examples that transfer much better to different networks than existing baselines. By evaluating our method against top defense solutions and official baselines from NIPS 2017 adversarial competition, the enhanced attack reaches an average success rate of 73.0%, which outperforms the top-1 attack submission in the NIPS competition by a large margin of 6.6%. We hope that our proposed attack strategy can serve as a strong benchmark baseline for evaluating the robustness of networks to adversaries and the effectiveness of different defense methods in the future. Code is available at https: //github.com/cihangxie/DI-2-FGSM .
translated by 谷歌翻译
发言人识别系统(SRSS)最近被证明容易受到对抗攻击的影响,从而引发了重大的安全问题。在这项工作中,我们系统地研究了基于确保SRSS的基于对抗性训练的防御。根据SRSS的特征,我们提出了22种不同的转换,并使用扬声器识别的7种最新有前途的对抗攻击(4个白盒和3个Black-Box)对其进行了彻底评估。仔细考虑了国防评估中的最佳实践,我们分析了转换的强度以承受适应性攻击。我们还评估并理解它们与对抗训练相结合的自适应攻击的有效性。我们的研究提供了许多有用的见解和发现,其中许多与图像和语音识别域中的结论是新的或不一致的,例如,可变和恒定的比特率语音压缩具有不同的性能,并且某些不可差的转换仍然有效地抗衡。当前有希望的逃避技术通常在图像域中很好地工作。我们证明,与完整的白色盒子设置中的唯一对抗性训练相比,提出的新型功能级转换与对抗训练相比是相当有效的,例如,将准确性提高了13.62%,而攻击成本则达到了两个数量级,而其他攻击成本则增加了。转型不一定会提高整体防御能力。这项工作进一步阐明了该领域的研究方向。我们还发布了我们的评估平台SpeakerGuard,以促进进一步的研究。
translated by 谷歌翻译
Deep neural networks are vulnerable to adversarial examples, which poses security concerns on these algorithms due to the potentially severe consequences. Adversarial attacks serve as an important surrogate to evaluate the robustness of deep learning models before they are deployed. However, most of existing adversarial attacks can only fool a black-box model with a low success rate. To address this issue, we propose a broad class of momentum-based iterative algorithms to boost adversarial attacks. By integrating the momentum term into the iterative process for attacks, our methods can stabilize update directions and escape from poor local maxima during the iterations, resulting in more transferable adversarial examples. To further improve the success rates for black-box attacks, we apply momentum iterative algorithms to an ensemble of models, and show that the adversarially trained models with a strong defense ability are also vulnerable to our black-box attacks. We hope that the proposed methods will serve as a benchmark for evaluating the robustness of various deep models and defense methods. With this method, we won the first places in NIPS 2017 Non-targeted Adversarial Attack and Targeted Adversarial Attack competitions.
translated by 谷歌翻译
对抗性的鲁棒性已经成为深度学习的核心目标,无论是在理论和实践中。然而,成功的方法来改善对抗的鲁棒性(如逆势训练)在不受干扰的数据上大大伤害了泛化性能。这可能会对对抗性鲁棒性如何影响现实世界系统的影响(即,如果它可以提高未受干扰的数据的准确性),许多人可能选择放弃鲁棒性)。我们提出内插对抗培训,该培训最近雇用了在对抗培训框架内基于插值的基于插值的培训方法。在CiFar -10上,对抗性训练增加了标准测试错误(当没有对手时)从4.43%到12.32%,而我们的内插对抗培训我们保留了对抗性的鲁棒性,同时实现了仅6.45%的标准测试误差。通过我们的技术,强大模型标准误差的相对增加从178.1%降至仅为45.5%。此外,我们提供内插对抗性培训的数学分析,以确认其效率,并在鲁棒性和泛化方面展示其优势。
translated by 谷歌翻译
This paper investigates recently proposed approaches for defending against adversarial examples and evaluating adversarial robustness. We motivate adversarial risk as an objective for achieving models robust to worst-case inputs. We then frame commonly used attacks and evaluation metrics as defining a tractable surrogate objective to the true adversarial risk. This suggests that models may optimize this surrogate rather than the true adversarial risk. We formalize this notion as obscurity to an adversary, and develop tools and heuristics for identifying obscured models and designing transparent models. We demonstrate that this is a significant problem in practice by repurposing gradient-free optimization techniques into adversarial attacks, which we use to decrease the accuracy of several recently proposed defenses to near zero. Our hope is that our formulations and results will help researchers to develop more powerful defenses.
translated by 谷歌翻译
与此同时,黑匣子对抗攻击已经吸引了令人印象深刻的注意,在深度学习安全领域的实际应用,同时,由于无法访问目标模型的网络架构或内部权重,非常具有挑战性。基于假设:如果一个例子对多种型号保持过逆势,那么它更有可能将攻击能力转移到其他模型,基于集合的对抗攻击方法是高效的,用于黑匣子攻击。然而,集合攻击的方式相当不那么调查,并且现有的集合攻击只是均匀地融合所有型号的输出。在这项工作中,我们将迭代集合攻击视为随机梯度下降优化过程,其中不同模型上梯度的变化可能导致众多局部Optima差。为此,我们提出了一种新的攻击方法,称为随机方差减少了整体(SVRE)攻击,这可以降低集合模型的梯度方差,并充分利用集合攻击。标准想象数据集的经验结果表明,所提出的方法可以提高对抗性可转移性,并且优于现有的集合攻击显着。
translated by 谷歌翻译
Recent work has demonstrated that deep neural networks are vulnerable to adversarial examples-inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. In fact, some of the latest findings suggest that the existence of adversarial attacks may be an inherent weakness of deep learning models. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides us with a broad and unifying view on much of the prior work on this topic. Its principled nature also enables us to identify methods for both training and attacking neural networks that are reliable and, in a certain sense, universal. In particular, they specify a concrete security guarantee that would protect against any adversary. These methods let us train networks with significantly improved resistance to a wide range of adversarial attacks. They also suggest the notion of security against a first-order adversary as a natural and broad security guarantee. We believe that robustness against such well-defined classes of adversaries is an important stepping stone towards fully resistant deep learning models. 1
translated by 谷歌翻译
In recent years, deep neural network approaches have been widely adopted for machine learning tasks, including classification. However, they were shown to be vulnerable to adversarial perturbations: carefully crafted small perturbations can cause misclassification of legitimate images. We propose Defense-GAN, a new framework leveraging the expressive capability of generative models to defend deep neural networks against such attacks. Defense-GAN is trained to model the distribution of unperturbed images. At inference time, it finds a close output to a given image which does not contain the adversarial changes. This output is then fed to the classifier. Our proposed method can be used with any classification model and does not modify the classifier structure or training procedure. It can also be used as a defense against any attack as it does not assume knowledge of the process for generating the adversarial examples. We empirically show that Defense-GAN is consistently effective against different attack methods and improves on existing defense strategies. Our code has been made publicly available at https://github.com/kabkabm/defensegan.
translated by 谷歌翻译
通过对数据集的样本应用小而有意的最差情况扰动可以产生对抗性输入,这导致甚至最先进的深神经网络,以高信任输出不正确的答案。因此,开发了一些对抗防御技术来提高模型的安全性和稳健性,并避免它们被攻击。逐渐,攻击者和捍卫者之间的游戏类似的竞争,其中两个玩家都会试图在最大化自己的收益的同时互相反对发挥最佳策略。为了解决游戏,每个玩家都基于对对手的战略选择的预测来选择反对对手的最佳策略。在这项工作中,我们正处于防守方面,以申请防止攻击的游戏理论方法。我们使用两个随机化方法,随机初始化和随机激活修剪,以创造网络的多样性。此外,我们使用一种去噪技术,超级分辨率,通过在攻击前预处理图像来改善模型的鲁棒性。我们的实验结果表明,这三种方法可以有效提高深度学习神经网络的鲁棒性。
translated by 谷歌翻译
深度学习(DL)系统的安全性是一个极为重要的研究领域,因为它们正在部署在多个应用程序中,因为它们不断改善,以解决具有挑战性的任务。尽管有压倒性的承诺,但深度学习系统容易受到制作的对抗性例子的影响,这可能是人眼无法察觉的,但可能会导致模型错误分类。对基于整体技术的对抗性扰动的保护已被证明很容易受到更强大的对手的影响,或者证明缺乏端到端评估。在本文中,我们试图开发一种新的基于整体的解决方案,该解决方案构建具有不同决策边界的防御者模型相对于原始模型。通过(1)通过一种称为拆分和剃须的方法转换输入的分类器的合奏,以及(2)通过一种称为对比度功能的方法限制重要特征,显示出相对于相对于不同的梯度对抗性攻击,这减少了将对抗性示例从原始示例转移到针对同一类的防御者模型的机会。我们使用标准图像分类数据集(即MNIST,CIFAR-10和CIFAR-100)进行了广泛的实验,以实现最新的对抗攻击,以证明基于合奏的防御的鲁棒性。我们还在存在更强大的对手的情况下评估稳健性,该对手同时靶向合奏中的所有模型。已经提供了整体假阳性和误报的结果,以估计提出的方法的总体性能。
translated by 谷歌翻译
Neural networks are known to be vulnerable to adversarial examples: inputs that are close to natural inputs but classified incorrectly. In order to better understand the space of adversarial examples, we survey ten recent proposals that are designed for detection and compare their efficacy. We show that all can be defeated by constructing new loss functions. We conclude that adversarial examples are significantly harder to detect than previously appreciated, and the properties believed to be intrinsic to adversarial examples are in fact not. Finally, we propose several simple guidelines for evaluating future proposed defenses.
translated by 谷歌翻译