我们研究了对抗性噪声模型中上下文搜索的问题。令$ d $为问题的维度,$ t $为时间范围,$ c $是系统中的噪声总量。对于$ \ eps $ -Ball损失,我们给出了$ o(C + d \ log(1/\ eps))的紧密遗憾,$(d^3 \ log(1/\ eps))\ log^2(t) + c \ log(t)\ log(1/\ eps))$ Krishnamurthy等人(stoc21)的结合。对于对称损失,我们给出了一种有效的算法,后悔$ O(C+D \ log T)$。我们的技术与先前的方法有很大的不同。具体而言,我们跟踪候选向量上的密度函数,而不是由候选向量组成的知识集,该媒介向量与获得的反馈一致。
translated by 谷歌翻译
我们研究上下文搜索,在较高维度中对二进制搜索的概括,该搜索捕获了设置,例如基于功能的动态定价。该问题的标准公式假定代理根据特定的均匀响应模型起作用。但是,实际上,某些反应可能会受到对抗的腐败。现有的算法在很大程度上取决于假定的响应模型(大约)对所有试剂的准确性,并且在存在一些此类任意错误的情况下的性能较差。当某些代理商以与基本响应模型不一致的方式行为时,我们会启动上下文搜索的研究。特别是,我们提供两种算法,一种基于多维二进制搜索方法,另一种基于梯度下降。我们表明,这些算法在没有对抗性腐败及其性能与此类代理的数量优雅地降低的情况下获得了近乎最佳的遗憾,这为在任何对抗性噪声模型中提供了第一个结果,以进行上下文搜索。我们的技术从学习理论,游戏理论,高维几何形状和凸分析中汲取灵感。
translated by 谷歌翻译
我们考虑多级分类的问题,其中普遍选择的查询流到达,并且必须在线分配标签。与寻求最小化错误分类率的传统界定不同,我们将每个查询的总距离最小化到与其正确标签相对应的区域。当通过最近的邻分区确定真正的标签时 - 即点的标签由它最接近欧几里德距离所提供的点,我们表明人们可以实现独立的损失查询总数。我们通过显示学习常规凸集每查询需要几乎线性损耗来补充此结果。我们的结果为语境搜索的几何问题而被遗憾地构建了遗憾的保证。此外,我们制定了一种从多字符分类到二进制分类的新型还原技术,这可能具有独立兴趣。
translated by 谷歌翻译
我们考虑在线线性优化问题,在每个步骤中,算法在单位球中播放点x_t $,损失$ \ langle c_t,x_t \ rangle $,x_t \ rangle $ for for some成本向量$ c_t $那么透露算法。最近的工作表明,如果算法接收到与$ C_T $之前的invial相关的提示$ h_t $,则它可以达到$ o(\ log t)$的遗憾保证,从而改善标准设置中$ \ theta(\ sqrt {t})$。在这项工作中,我们研究了算法是否真正需要在每次步骤中需要提示的问题。有些令人惊讶的是,我们表明,只需在自然查询模型下只需在$ O(\ SQRT {T})$暗示即可获得$ O(\ log t)$后悔;相比之下,我们还显示$ o(\ sqrt {t})$提示不能优于$ \ omega(\ sqrt {t})$后悔。我们为我们的结果提供了两种应用,以乐观的遗憾界限和弃权问题的乐观遗憾。
translated by 谷歌翻译
我们研究Stackelberg游戏,其中一位校长反复与长寿,非洋流代理商进行互动,而不知道代理商的回报功能。尽管当代理商是近视,非侧心代理会带来额外的并发症时,在Stackelberg游戏中的学习是充分理解的。尤其是,非洋流代理可以从战略上选择当前劣等的行动,以误导校长的学习算法并在未来获得更好的结果。我们提供了一个通用框架,该框架可在存在近视剂的情况下降低非洋白酶的学习来优化强大的匪徒。通过设计和分析微型反应性匪徒算法,我们的还原从校长学习算法的统计效率中进行了差异,以与其在诱导接近最佳的响应中的有效性。我们将此框架应用于Stackelberg Security Games(SSG),需求曲线,战略分类和一般有限的Stackelberg游戏的价格。在每种情况下,我们都表征了近最佳响应中存在的错误的类型和影响,并为此类拼写错误开发了一种鲁棒性的学习算法。在此过程中,我们通过最先进的$ O(n^3)$从SSGS中提高了SSG中的学习复杂性,从通过发现此类游戏的基本结构属性。该结果除了对非洋流药物学习之外,还具有独立的兴趣。
translated by 谷歌翻译
我们研究了非参数在线回归中的快速收敛速度,即遗憾的是关于具有有界复杂度的任意函数类来定义后悔。我们的贡献是两倍: - 在绝对损失中的非参数网上回归的可实现设置中,我们提出了一种随机适当的学习算法,该算法在假设类的顺序脂肪破碎尺寸方面获得了近乎最佳的错误。在与一类Littlestone维度$ D $的在线分类中,我们的绑定减少到$ d \ cdot {\ rm poly} \ log t $。这结果回答了一个问题,以及适当的学习者是否可以实现近乎最佳错误的界限;以前,即使在线分类,绑定的最知名错误也是$ \ tilde o(\ sqrt {dt})$。此外,对于真实值(回归)设置,在这项工作之前,界定的最佳错误甚至没有以不正当的学习者所知。 - 使用上述结果,我们展示了Littlestone维度$ D $的一般总和二进制游戏的独立学习算法,每个玩家达到后悔$ \ tilde o(d ^ {3/4} \ cdot t ^ {1 / 4})$。该结果概括了Syrgkanis等人的类似结果。 (2015)谁表明,在有限的游戏中,最佳遗憾可以从普通的o(\ sqrt {t})$中的$ o(\ sqrt {t})为游戏设置中的$ o(t ^ {1/4})$。要建立上述结果,我们介绍了几种新技术,包括:分层聚合规则,以实现对实际类别的最佳错误,Hanneke等人的适当在线可实现学习者的多尺度扩展。 (2021),一种方法来表明这种非参数学习算法的输出是稳定的,并且证明Minimax定理在所有在线学习游戏中保持。
translated by 谷歌翻译
我们考虑非静止在线凸优化的框架,其中学习者寻求控制其动态遗憾,免于任意比较器序列。当损耗函数强烈凸或exy-yshave时,我们证明了强烈的自适应(SA)算法可以被视为在比较器序列的路径变化$ V_T $的路径变化中控制动态遗憾的原则方式。具体来说,我们展示了SA算法享受$ \ tilde o(\ sqrt {tv_t} \ vee \ log t)$和$ \ tilde o(\ sqrt {dtv_t} \ vee d \ log t)$动态遗憾强烈凸Exp-Trowave损失分别没有APRIORI $ v_t $。本发明进一步展示了原理方法的多功能性,在与高斯内核的界限线性预测器和在线回归的环境中进一步证明了原则方法。在一个相关的环境下,纸张的第二个组件解决了Zhdanov和Kalnishkan(2010)提出的一个开放问题,涉及与平方误差损失的在线内核回归。我们在一定处罚后悔的新下限,该遗憾地建立了在线内核Ridge回归(KRR)的近极低最低限度。我们的下限可以被视为vovk(2001)中派生的rkhs扩展,以便在有限维中在线线性回归。
translated by 谷歌翻译
在随着时间变化的组合环境中的在线决策激励,我们研究了将离线算法转换为其在线对应物的问题。我们专注于使用贪婪算法对局部错误的贪婪算法进行恒定因子近似的离线组合问题。对于此类问题,我们提供了一个通用框架,该框架可有效地将稳健的贪婪算法转换为使用Blackwell的易近算法。我们证明,在完整信息设置下,由此产生的在线算法具有$ O(\ sqrt {t})$(近似)遗憾。我们进一步介绍了Blackwell易接近性的强盗扩展,我们称之为Bandit Blackwell的可接近性。我们利用这一概念将贪婪的稳健离线算法转变为匪(t^{2/3})$(近似)$(近似)的遗憾。展示了我们框架的灵活性,我们将脱机之间的转换应用于收入管理,市场设计和在线优化的几个问题,包括在线平台中的产品排名优化,拍卖中的储备价格优化以及supperular tossodular最大化。 。我们还将还原扩展到连续优化的类似贪婪的一阶方法,例如用于最大化连续强的DR单调下调功能,这些功能受到凸约束的约束。我们表明,当应用于这些应用程序时,我们的转型会导致新的后悔界限或改善当前已知界限。我们通过为我们的两个应用进行数值模拟来补充我们的理论研究,在这两种应用中,我们都观察到,转换的数值性能在实际情况下优于理论保证。
translated by 谷歌翻译
一系列不受限制的在线凸优化中的作品已经调查了同时调整比较器的规范$ u $和梯度的最大规范$ g $的可能性。在完全的一般性中,已知匹配的上限和下界表明,这是不可避免的$ g u^3 $的不可避免的成本,当$ g $或$ u $提前知道时,这是不需要的。令人惊讶的是,Kempka等人的最新结果。 (2019年)表明,在特定情况下,不需要这样的适应性价格,例如$ -Lipschitz损失(例如铰链损失)。我们通过表明我们专门研究任何其他常见的在线学习损失,我们的结果涵盖了日志损失,(线性和非参数)逻辑回归,我们实际上从来没有任何代价来为适应性支付的代价,从而跟进这一观察结果,我们会跟进这一观察结果。方形损耗预测,以及(线性和非参数)最小二乘回归。我们还通过提供对$ U $的明确依赖的下限来填补文献中的几个空白。在所有情况下,我们都会获得无标度算法,这些算法在数据恢复下是合理的不变。我们的一般目标是在不关心计算效率的情况下建立可实现的速率,但是对于线性逻辑回归,我们还提供了一种适应性方法,该方法与Agarwal等人的最新非自适应算法一样有效。 (2021)。
translated by 谷歌翻译
我们研究$ k $ used的上下文决斗强盗问题,一个顺序决策制定设置,其中学习者使用上下文信息来制作两个决定,但只观察到\ emph {基于优先级的反馈}建议一个决定比另一个决定更好。我们专注于可实现的遗憾最小化问题,其中反馈由一个由给定函数类$ \ mathcal f $规定的成对偏好矩阵生成。我们提供了一种新的算法,实现了最佳反应遗憾的新概念的最佳遗憾,这是一个严格更强烈的性能测量,而不是先前作品所考虑的绩效衡量标准。该算法还在计算上有效,在多项式时间中运行,假设访问在线丢失回归超过$ \ mathcal f $。这可以解决dud \'ik等人的开放问题。[2015]关于Oracle高效,后悔 - 用于上下文决斗匪徒的最佳算法。
translated by 谷歌翻译
我们考虑基于嘈杂的强盗反馈优化黑盒功能的问题。内核强盗算法为此问题显示了强大的实证和理论表现。然而,它们严重依赖于模型所指定的模型,并且没有它可能会失败。相反,我们介绍了一个\ emph {isspecified}内塞的强盗设置,其中未知函数可以是$ \ epsilon $ - 在一些再现内核希尔伯特空间(RKHS)中具有界限范数的函数均匀近似。我们设计高效实用的算法,其性能在模型误操作的存在下最微小地降低。具体而言,我们提出了一种基于高斯过程(GP)方法的两种算法:一种乐观的EC-GP-UCB算法,需要了解误操作误差,并相断的GP不确定性采样,消除型算法,可以适应未知模型拼盘。我们在$ \ epsilon $,时间范围和底层内核方面提供累积遗憾的上限,我们表明我们的算法达到了$ \ epsilon $的最佳依赖性,而没有明确的误解知识。此外,在一个随机的上下文设置中,我们表明EC-GP-UCB可以有效地与遗憾的平衡策略有效地结合,尽管不知道$ \ epsilon $尽管不知道,但仍然可以获得类似的遗憾范围。
translated by 谷歌翻译
我们给出了第一个多项式算法来估计$ d $ -variate概率分布的平均值,从$ \ tilde {o}(d)$独立的样本受到纯粹的差异隐私的界限。此问题的现有算法无论是呈指数运行时间,需要$ \ OMEGA(D ^ {1.5})$样本,或仅满足较弱的集中或近似差分隐私条件。特别地,所有先前的多项式算法都需要$ d ^ {1+ \ omega(1)} $ samples,以保证“加密”高概率,1-2 ^ { - d ^ {\ omega(1) $,虽然我们的算法保留$ \ tilde {o}(d)$ SAMPS复杂性即使在此严格设置中也是如此。我们的主要技术是使用强大的方块方法(SOS)来设计差异私有算法的新方法。算法的证据是在高维算法统计数据中的许多近期作品中的一个关键主题 - 显然需要指数运行时间,但可以通过低度方块证明可以捕获其分析可以自动变成多项式 - 时间算法具有相同的可证明担保。我们展示了私有算法的类似证据现象:工作型指数机制的实例显然需要指数时间,但可以用低度SOS样张分析的指数时间,可以自动转换为多项式差异私有算法。我们证明了捕获这种现象的元定理,我们希望在私人算法设计中广泛使用。我们的技术还在高维度之间绘制了差异私有和强大统计数据之间的新连接。特别是通过我们的校验算法镜头来看,几次研究的SOS证明在近期作品中的算法稳健统计中直接产生了我们差异私有平均估计算法的关键组成部分。
translated by 谷歌翻译
我们在高斯分布下使用Massart噪声与Massart噪声进行PAC学习半个空间的问题。在Massart模型中,允许对手将每个点$ \ mathbf {x} $的标签与未知概率$ \ eta(\ mathbf {x})\ leq \ eta $,用于某些参数$ \ eta \ [0,1 / 2] $。目标是找到一个假设$ \ mathrm {opt} + \ epsilon $的错误分类错误,其中$ \ mathrm {opt} $是目标半空间的错误。此前已经在两个假设下研究了这个问题:(i)目标半空间是同质的(即,分离超平面通过原点),并且(ii)参数$ \ eta $严格小于$ 1/2 $。在此工作之前,当除去这些假设中的任何一个时,不知道非增长的界限。我们研究了一般问题并建立以下内容:对于$ \ eta <1/2 $,我们为一般半个空间提供了一个学习算法,采用样本和计算复杂度$ d ^ {o_ {\ eta}(\ log(1 / \ gamma) )))}} \ mathrm {poly}(1 / \ epsilon)$,其中$ \ gamma = \ max \ {\ epsilon,\ min \ {\ mathbf {pr} [f(\ mathbf {x})= 1], \ mathbf {pr} [f(\ mathbf {x})= -1] \} \} $是目标半空间$ f $的偏差。现有的高效算法只能处理$ \ gamma = 1/2 $的特殊情况。有趣的是,我们建立了$ d ^ {\ oomega(\ log(\ log(\ log(\ log))}}的质量匹配的下限,而是任何统计查询(SQ)算法的复杂性。对于$ \ eta = 1/2 $,我们为一般半空间提供了一个学习算法,具有样本和计算复杂度$ o_ \ epsilon(1)d ^ {o(\ log(1 / epsilon))} $。即使对于均匀半空间的子类,这个结果也是新的;均匀Massart半个空间的现有算法为$ \ eta = 1/2 $提供可持续的保证。我们与D ^ {\ omega(\ log(\ log(\ log(\ log(\ epsilon))} $的近似匹配的sq下限补充了我们的上限,这甚至可以为同类半空间的特殊情况而保持。
translated by 谷歌翻译
我们在嵌套政策类别的存在下研究匪徒场景中的模型选择问题,目的是获得同时的对抗和随机性(“两全其美”)高概率的遗憾保证。我们的方法要求每个基础学习者都有一个候选人的遗憾约束,可能会或可能不会举行,而我们的元算法按照一定时间表来扮演每个基础学习者,该时间表使基础学习者的候选人后悔的界限保持平衡,直到被发现违反他们的保证为止。我们开发了专门设计的仔细的错误指定测试,以将上述模型选择标准与利用环境的(潜在良性)性质的能力相结合。我们在对抗环境中恢复畜栏算法的模型选择保证,但是在实现高概率后悔界限的附加益处,特别是在嵌套对抗性线性斑块的情况下。更重要的是,我们的模型选择结果也同时在差距假设​​下的随机环境中同时保持。这些是在(线性)匪徒场景中执行模型选择时,可以达到世界上最好的(随机和对抗性)保证的第一个理论结果。
translated by 谷歌翻译
我们研究了一个受个人公平的限制的在线学习问题,这要求类似的个体相似地治疗。与事先对个人公平的工作不同,我们不认为个人之间的相似性措施是已知的,我们也不认为这种措施采用某种参数形式。相反,我们利用了审计师的存在,审计师在没有阐述定量措施的情况下检测公平违规行为。在每一轮中,审计员审查了学习者的决定,并试图识别学习者不公平对待的一对个人。我们提供了一般的框架,将我们的模型中的在线分类降低到标准的在线分类,这使我们能够利用现有的在线学习算法来实现子线性遗憾和公平违规的数量。令人惊讶的是,在独立于分布绘制数据的随机环境中,我们还能够建立PAC样式和准确性概括保障(YONA和Rothblum [2018]),尽管只有获得了一种非常受限制的公平形式回馈。我们的公平泛化界定定性匹配Yona和Rothblum的统一收敛[2018],同时还提供了有意义的准确性概括担保。我们的结果通过Gillen等人解决了一个开放的问题。 [2018]通过表明在未知的单个公平性约束下的在线学习是可能的,即使在不假设基础相似度措施的强大参数形式的情况下也是可能的。
translated by 谷歌翻译
在古典语境匪徒问题中,在每轮$ t $,学习者观察一些上下文$ c $,选择一些动作$ i $执行,并收到一些奖励$ r_ {i,t}(c)$。我们考虑此问题的变体除了接收奖励$ r_ {i,t}(c)$之外,学习者还要学习其他一些上下文$的$ r_ {i,t}(c')$的值C'$ in设置$ \ mathcal {o} _i(c)$;即,通过在不同的上下文下执行该行动来实现的奖励\ mathcal {o} _i(c)$。这种变体出现在若干战略设置中,例如学习如何在非真实的重复拍卖中出价,最热衷于随着许多平台转换为运行的第一价格拍卖。我们将此问题称为交叉学习的上下文匪徒问题。古典上下围匪徒问题的最佳算法达到$ \ tilde {o}(\ sqrt {ckt})$遗憾针对所有固定策略,其中$ c $是上下文的数量,$ k $的行动数量和$ $次数。我们设计并分析了交叉学习的上下文匪徒问题的新算法,并表明他们的遗憾更好地依赖上下文的数量。在选择动作时学习所有上下文的奖励的完整交叉学习下,即设置$ \ mathcal {o} _i(c)$包含所有上下文,我们显示我们的算法实现后悔$ \ tilde {o}( \ sqrt {kt})$,删除$ c $的依赖。对于任何其他情况,即在部分交叉学习下,$ | \ mathcal {o} _i(c)| <c $ for $(i,c)$,遗憾界限取决于如何设置$ \ mathcal o_i(c)$影响上下文之间的交叉学习的程度。我们从Ad Exchange运行一流拍卖的广告交换中模拟了我们的真实拍卖数据的算法,并表明了它们优于传统的上下文强盗算法。
translated by 谷歌翻译
我们研究了一个顺序决策问题,其中学习者面临$ k $武装的随机匪徒任务的顺序。对手可能会设计任务,但是对手受到限制,以在$ m $ and的较小(但未知)子集中选择每个任务的最佳组。任务边界可能是已知的(强盗元学习设置)或未知(非平稳的强盗设置)。我们设计了一种基于Burnit subsodular最大化的减少的算法,并表明,在大量任务和少数最佳武器的制度中,它在两种情况下的遗憾都比$ \ tilde {o}的简单基线要小。 \ sqrt {knt})$可以通过使用为非平稳匪徒问题设计的标准算法获得。对于固定任务长度$ \ tau $的强盗元学习问题,我们证明该算法的遗憾被限制为$ \ tilde {o}(nm \ sqrt {m \ tau}+n^{2/3} m \ tau)$。在每个任务中最佳武器的可识别性的其他假设下,我们显示了一个带有改进的$ \ tilde {o}(n \ sqrt {m \ tau}+n^{1/2} {1/2} \ sqrt的强盗元学习算法{m k \ tau})$遗憾。
translated by 谷歌翻译
我们在非静止环境中调查在线凸优化,然后选择\ emph {动态后悔}作为性能测量,定义为在线算法产生的累积损失与任何可行比较器序列之间的差异。让$ t $是$ p_t $ be的路径长度,基本上反映了环境的非平稳性,最先进的动态遗憾是$ \ mathcal {o}(\ sqrt {t( 1 + p_t)})$。虽然这一界限被证明是凸函数最佳的最低限度,但在本文中,我们证明可以进一步提高一些简单的问题实例的保证,特别是当在线功能平滑时。具体而言,我们提出了新的在线算法,可以利用平滑度并替换动态遗憾的$ t $替换依据\ {问题依赖性}数量:损耗函数梯度的变化,比较器序列的累积损失,以及比较器序列的累积损失最低术语的最低限度。这些数量是大多数$ \ mathcal {o}(t)$,良性环境中可能更小。因此,我们的结果适应了问题的内在难度,因为边界比现有结果更严格,以便在最坏的情况下保证相同的速率。值得注意的是,我们的算法只需要\ emph {一个}渐变,这与开发的方法共享相同的渐变查询复杂性,以优化静态遗憾。作为进一步的应用,我们将来自全信息设置的结果扩展到具有两点反馈的强盗凸优化,从而达到此类强盗任务的第一个相关的动态遗憾。
translated by 谷歌翻译
我们考虑通过顺序查询其(可能扰动的)值,在紧凑型结构域上最大化非concave Lipschitz多元函数的问题。我们研究了Piyavskii和Shubert在1972年最初设计的天然算法,为此,我们证明了有关达到或证明给定优化精度所需功能的评估次数的新范围。我们的分析使用了强烈的优化观点,并通过界定评估数量来证明给定准确性的数量接近封装数量,从而解决了Hansen等人(1991)的开放问题。
translated by 谷歌翻译
这项工作研究了凸和Lipschitz功能的在线零级优化。我们基于两个函数评估和$ \ ell_1 $ -sphere的随机化提出了一个新颖的梯度估计器。考虑到可行的集合和Lipschitz假设的不同几何形状,我们分析了在线双重平均算法的算法,代替了通常的梯度。我们考虑对零级甲骨文噪声的两种假设:取消噪声和对抗性噪声。我们提供任何时间和完全数据驱动的算法,它适应问题的所有参数。在文献中先前研究过的噪声的情况下,我们的保证可以比Duchi等人获得的最新界限可比性或更好。 (2015)和Shamir(2017)非自适应算法。我们的分析是基于在$ \ ell_1 $ -sphere上带有显式常数的均匀度量的新加权的Poincar \'e类型不等式,这可能具有独立的利益。
translated by 谷歌翻译