工程方法集中在传统的分解和重构概念上,这些概念依赖于分区组件的输入和输出,以允许组成后的组件级属性。但是,在人工智能(AI)中,通常期望系统会影响其环境,并通过环境影响自己。因此,目前尚不清楚AI系统的输入是否将独立于其输出,因此,是否可以将AI系统视为传统组件。本文认为,工程通用智能需要新的通用系统戒律,称为核心和外围,并探索其理论用途。使用抽象系统理论和必要品种定律详细阐述了新的戒律。通过使用呈现的材料,工程师可以更好地理解调节AI结果以满足利益相关者需求的总体特征,以及实施方案的一般系统性质如何挑战传统工程实践。
translated by 谷歌翻译
用于实现人为总体情报(AGI)的解决方案方法可能不包含适当模拟和表征AGI所需的形式主义。特别地,目前的学习方法将问题域和问题任务的概念作为基本的常见,但几乎没有明显,野外遇到的AGI将被辨别到一组域任务配对中。显然,系统中AGI的结果也不明显,可以在域和任务方面或作为其后果很好地表达。因此,对于学习的荟萃理论,在解决方案方法方面没有明确表达自己的实际和理论使用。一般系统理论提供了这样的元理论。这里,Mesarovician摘要系统理论被用作学习的超级结构。摘要制定了学习系统。随后的精制将学习系统的假设分层将学习系统的假设分解为层次结构,并考虑到学习理论的层次结构项目。卓越的梅萨维亚人摘要学习系统理论通过直接关注思想参与者,在这种情况下,在这种情况下,与当代关注有关思维的参与者解决问题的思考系统来说,通过专注于思维参与者来返回人工智能研究的创始动力。
translated by 谷歌翻译
在流行媒体中,人造代理商的意识出现与同时实现人类或超人水平智力的那些相同的代理之间通常存在联系。在这项工作中,我们探讨了意识和智力之间这种看似直观的联系的有效性和潜在应用。我们通过研究与三种当代意识功能理论相关的认知能力:全球工作空间理论(GWT),信息生成理论(IGT)和注意力模式理论(AST)。我们发现,这三种理论都将有意识的功能专门与人类领域将军智力的某些方面联系起来。有了这个见解,我们转向人工智能领域(AI),发现尽管远未证明一般智能,但许多最先进的深度学习方法已经开始纳入三个功能的关键方面理论。确定了这一趋势后,我们以人类心理时间旅行的激励例子来提出方式,其中三种理论中每种理论的见解都可以合并为一个单一的统一和可实施的模型。鉴于三种功能理论中的每一种都可以通过认知能力来实现这一可能,因此,具有精神时间旅行的人造代理不仅具有比当前方法更大的一般智力,而且还与我们当前对意识功能作用的理解更加一致在人类中,这使其成为AI研究的有希望的近期目标。
translated by 谷歌翻译
即将开发我们呼叫所体现的系统的新一代越来越自主和自学习系统。在将这些系统部署到真实上下文中,我们面临各种工程挑战,因为它以有益的方式协调所体现的系统的行为至关重要,确保他们与我们以人为本的社会价值观的兼容性,并且设计可验证安全可靠的人类-Machine互动。我们正在争辩说,引发系统工程将来自嵌入到体现系统的温室,并确保动态联合的可信度,这种情况意识到的情境意识,意图,探索,探险,不断发展,主要是不可预测的,越来越自主的体现系统在不确定,复杂和不可预测的现实世界环境中。我们还识别了许多迫切性的系统挑战,包括可信赖的体现系统,包括强大而人为的AI,认知架构,不确定性量化,值得信赖的自融化以及持续的分析和保证。
translated by 谷歌翻译
仅基于神经网络或符号计算的人工智能(AI)系统提出了代表性的复杂性挑战。虽然最小的表示可以产生行业或简单决策等行为输出,但更精细的内部表示可能会提供更丰富的行为。我们建议可以使用称为元模型的计算方法来解决这些问题。元模型是体现的混合模型,其中包括具有不同程度的表示复杂性的分层组件。我们将提出使用专门类型的模型组成的层组合。这种关系模仿了哺乳动物大脑的新皮质 - 丘脑系统关系,而不是使用通用黑匣子方法统一每个组件,它使用了前馈和反馈连接来促进功能通信。重要的是,可以在解剖学上显式建立层之间的关系。这允许可以以有趣的方式将结构特异性纳入模型的功能。我们将提出几种类型的层,这些层可能会在功能上集成到执行独特类型的任务的代理中,从同时执行形态发生和感知的代理到经历形态发生以及同时获得概念表示的代理。我们对元模型模型的方法涉及创建具有不同程度的代表性复杂性的模型,创建分层的元结构结构,模仿生物学大脑的结构和功能异质性,并具有足够灵活的输入/输出方法,以适应认知功能,社交互动,社交互动,社会互动,和自适应行为。我们将通过提出这种灵活和开源方法的开发中的下一步来得出结论。
translated by 谷歌翻译
机器人系统的长期自主权隐含地需要可靠的平台,这些平台能够自然处理硬件和软件故障,行为问题或缺乏知识。基于模型的可靠平台还需要在系统开发过程中应用严格的方法,包括使用正确的构造技术来实现机器人行为。随着机器人的自治水平的提高,提供系统可靠性的提供成本也会增加。我们认为,自主机器人的可靠性可靠性可以从几种认知功能,知识处理,推理和元评估的正式模型中受益。在这里,我们为自动机器人代理的认知体系结构的生成模型提出了案例,该模型订阅了基于模型的工程和可靠性,自主计算和知识支持机器人技术的原则。
translated by 谷歌翻译
我们提出了五个基本的认知科学基本宗旨,我们在相关文献中认真地将其确定为该哲学的主要基本原则。然后,我们开发一个数学框架来讨论符合这些颁布宗旨的认知系统(人造和自然)。特别是我们注意,我们的数学建模并不将内容符号表示形式归因于代理商,并且代理商的大脑,身体和环境的建模方式使它们成为更大整体的不可分割的一部分。目的是为认知创造数学基础,该基础符合颁布主义。我们看到这样做的两个主要好处:(1)它使计算机科学家,AI研究人员,机器人主义者,认知科学家和心理学家更容易获得颁发的思想,并且(2)它为哲学家提供了一种可以使用的数学工具,可以使用它澄清他们的观念并帮助他们的辩论。我们的主要概念是一种感觉运动系统,这是过渡系统研究概念的特殊情况。我们还考虑了相关的概念,例如标记的过渡系统和确定性自动机。我们分析了一个名为“足够的概念”,并表明它是“从颁布主义的角度来看”中“认知数学数学”中基础概念的一个很好的候选者。我们通过证明对最小的完善(在某种意义上与生物体对环境的最佳调整相对应)的独特定理来证明其重要性,并证明充分性与已知的概念相对应,例如足够的历史信息空间。然后,我们开发其他相关概念,例如不足程度,普遍覆盖,等级制度,战略充足。最后,我们将其全部绑架到颁布的宗旨。
translated by 谷歌翻译
2021年8月,圣达菲研究所举办了一个关于集体智力的研讨会,是智力项目基础的一部分。该项目旨在通过促进智能性质的跨学科研究来推进人工智能领域。该研讨会汇集了计算机科学家,生物学家,哲学家,社会科学家和其他人,以分享他们对多种代理人之间的互动产生的洞察力的见解 - 是否这些代理商是机器,动物或人类。在本报告中,我们总结了每个会谈和随后的讨论。我们还借出了许多关键主题,并确定未来研究的重要前沿。
translated by 谷歌翻译
我们展示了任何具有自由度和局部自由能的系统如何在自由能原理的限制下,都将发展朝着支持层次结构计算的神经形态形态发展,在该计算中,每个层次结构的每个级别都会构成其投入的粗糙度。,并双重地将其输出的细粒度。这种层次结构发生在整个生物学中,从细胞内信号转导途径的体系结构到哺乳动物大脑中的感知和动作周期的大规模组织。正式地,一方面,锥体 - 康基图(CCCD)作为量子参考帧的模型,另一方面是CCCDS和拓扑量子场理论之间的近距离形式连接,允许在全剂量量子中代表此类计算拓扑量子神经网络的计算框架。
translated by 谷歌翻译
可解释的人工智能和可解释的机器学习是重要性越来越重要的研究领域。然而,潜在的概念仍然难以捉摸,并且缺乏普遍商定的定义。虽然社会科学最近的灵感已经重新分为人类受助人的需求和期望的工作,但该领域仍然错过了具体的概念化。通过审查人类解释性的哲学和社会基础,我们采取措施来解决这一挑战,然后我们转化为技术领域。特别是,我们仔细审查了算法黑匣子的概念,并通过解释过程确定的理解频谱并扩展了背景知识。这种方法允许我们将可解释性(逻辑)推理定义为在某些背景知识下解释的透明洞察(进入黑匣子)的解释 - 这是一个从事在Admoleis中理解的过程。然后,我们采用这种概念化来重新审视透明度和预测权力之间的争议权差异,以及对安特 - 人穴和后宫后解释者的影响,以及可解释性发挥的公平和问责制。我们还讨论机器学习工作流程的组件,可能需要可解释性,从以人为本的可解释性建立一系列思想,重点介绍声明,对比陈述和解释过程。我们的讨论调整并补充目前的研究,以帮助更好地导航开放问题 - 而不是试图解决任何个人问题 - 从而为实现的地面讨论和解释的人工智能和可解释的机器学习的未来进展奠定了坚实的基础。我们结束了我们的研究结果,重新审视了实现所需的算法透明度水平所需的人以人为本的解释过程。
translated by 谷歌翻译
Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.
translated by 谷歌翻译
在过去的几年中,计算机视觉的显着进步总的来说是归因于深度学习,这是由于大量标记数据的可用性所推动的,并与GPU范式的爆炸性增长配对。在订阅这一观点的同时,本书批评了该领域中所谓的科学进步,并在基于信息的自然法则的框架内提出了对愿景的调查。具体而言,目前的作品提出了有关视觉的基本问题,这些问题尚未被理解,引导读者走上了一个由新颖挑战引起的与机器学习基础共鸣的旅程。中心论点是,要深入了解视觉计算过程,有必要超越通用机器学习算法的应用,而要专注于考虑到视觉信号的时空性质的适当学习理论。
translated by 谷歌翻译
这篇理论文章研究了如何在计算机中构建类似人类的工作记忆和思维过程。应该有两个工作记忆存储,一个类似于关联皮层中的持续点火,另一个类似于大脑皮层中的突触增强。这些商店必须通过环境刺激或内部处理产生的新表示不断更新。它们应该连续更新,并以一种迭代的方式进行更新,这意味着在下一个状态下,应始终保留一组共同工作中的某些项目。因此,工作记忆中的一组概念将随着时间的推移逐渐发展。这使每个状态都是对先前状态的修订版,并导致连续的状态与它们所包含的一系列表示形式重叠和融合。随着添加新表示形式并减去旧表示形式,在这些更改过程中,有些保持活跃几秒钟。这种持续活动,类似于人工复发性神经网络中使用的活动,用于在整个全球工作区中传播激活能量,以搜索下一个关联更新。结果是能够朝着解决方案或目标前进的联想连接的中间状态链。迭代更新在这里概念化为信息处理策略,一种思想流的计算和神经生理决定因素以及用于设计和编程人工智能的算法。
translated by 谷歌翻译
最近围绕语言处理模型的复杂性的最新炒作使人们对机器获得了类似人类自然语言的指挥的乐观情绪。人工智能中自然语言理解的领域声称在这一领域取得了长足的进步,但是,在这方面和其他学科中使用“理解”的概念性清晰,使我们很难辨别我们实际上有多近的距离。目前的方法和剩余挑战的全面,跨学科的概述尚待进行。除了语言知识之外,这还需要考虑我们特定于物种的能力,以对,记忆,标签和传达我们(足够相似的)体现和位置经验。此外,测量实际约束需要严格分析当前模型的技术能力,以及对理论可能性和局限性的更深入的哲学反思。在本文中,我将所有这些观点(哲学,认知语言和技术)团结在一起,以揭开达到真实(人类般的)语言理解所涉及的挑战。通过解开当前方法固有的理论假设,我希望说明我们距离实现这一目标的实际程度,如果确实是目标。
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
如果未来的AI系统在新的情况下是可靠的安全性,那么他们将需要纳入指导它们的一般原则,以便强烈地认识到哪些结果和行为将是有害的。这样的原则可能需要得到约束力的监管制度的支持,该法规需要广泛接受的基本原则。它们还应该足够具体用于技术实施。本文从法律中汲取灵感,解释了负面的人权如何履行此类原则的作用,并为国际监管制度以及为未来的AI系统建立技术安全限制的基础。
translated by 谷歌翻译
There has been a recent resurgence in the area of explainable artificial intelligence as researchers and practitioners seek to make their algorithms more understandable. Much of this research is focused on explicitly explaining decisions or actions to a human observer, and it should not be controversial to say that looking at how humans explain to each other can serve as a useful starting point for explanation in artificial intelligence. However, it is fair to say that most work in explainable artificial intelligence uses only the researchers' intuition of what constitutes a 'good' explanation. There exists vast and valuable bodies of research in philosophy, psychology, and cognitive science of how people define, generate, select, evaluate, and present explanations, which argues that people employ certain cognitive biases and social expectations towards the explanation process. This paper argues that the field of explainable artificial intelligence should build on this existing research, and reviews relevant papers from philosophy, cognitive psychology/science, and social psychology, which study these topics. It draws out some important findings, and discusses ways that these can be infused with work on explainable artificial intelligence.
translated by 谷歌翻译
人工智能的象征主义,联系主义和行为主义方法在各种任务中取得了很多成功,而我们仍然没有对社区中达成足够共识的“智能”的明确定义(尽管有70多个不同的“版本”的“版本”定义)。智力的本质仍然处于黑暗状态。在这项工作中,我们不采用这三种传统方法中的任何一种,而是试图确定智力本质的某些基本方面,并构建一种数学模型来代表和潜在地重现这些基本方面。我们首先强调定义讨论范围和调查粒度的重要性。我们仔细比较了人工智能,并定性地展示了信息抽象过程,我们建议这是联系感知和认知的关键。然后,我们提出了“概念”的更广泛的概念,将自我模型的概念从世界模型中分离出来,并构建了一种称为世界自我模型(WSM)的新模型。我们展示了创建和连接概念的机制,以及WSM如何接收,处理和输出有关解决的问题的信息的流程。我们还考虑并讨论了所提出的理论框架的潜在计算机实施问题,最后我们提出了一个基于WSM的统一智能一般框架。
translated by 谷歌翻译
哲学家最近专注于批判性的认识论挑战,这些挑战是由深神经网络的不透明性引起的。从这本文献中可以得出结论,即使不是不可能,使用不透明模型进行良好的科学是极具挑战性的。然而,这很难与最近对科学的AI乐观情绪的繁荣以及最近受AI方法驱动的一系列科学突破的泛滥。在本文中,我认为,哲学悲观和科学乐观主义之间的脱节是由于未能研究AI实际在科学中的使用而驱动的。我表明,为了理解AI驱动的突破的认知理由,哲学家必须研究深度学习的作用,这是发现更广泛的发现过程的一部分。在这方面,“发现背景”与“理由背景”之间的哲学区别在这方面很有帮助。我证明了与科学文献中有两个案例进行这种区别的重要性,并表明认知不透明度无需降低AI的能力,使科学家带来了显着且合理的突破。
translated by 谷歌翻译
ML社区认识到预期和减轻基准研究的潜在负面影响的重要性。在该立场论文中,我们认为,需要更多的关注,这需要对ML基准的技术和科学核心的道德风险领域。我们确定了人类智商和ML基准之间被忽视的结构相似性。人类智能和ML基准在设定标准以描述,评估和比较与智能相关的任务的标准方面具有相似之处。这使我们能够从ML基准社区考虑需要考虑的女权主义哲学哲学哲学中解开课程。最后,我们概述了基准研究伦理和伦理评论的实用建议。
translated by 谷歌翻译