与淘宝和亚马逊等大型平台不同,由于严重的数据分配波动(DDF)问题,在小规模推荐方案中开发CVR模型是更具挑战性的。 DDF防止现有的CVR模型自生效以来,因为1)需要几个月的数据需要足够小的场景训练CVR模型,导致培训和在线服务之间的相当大的分布差异; 2)电子商务促销对小型情景产生了更大的影响,导致即将到期的时间段的不确定性。在这项工作中,我们提出了一种名为MetacVR的新型CVR方法,从Meta学习的角度解决了DDF问题。首先,由特征表示网络(FRN)和输出层组成的基础CVR模型是精心设计和培训的,在几个月内与样品充分设计和培训。然后,我们将不同数据分布的时间段视为不同的场合,并使用相应的样本和预先训练的FRN获得每个场合的正面和负原型。随后,设计了距离度量网络(DMN)以计算每个样本和所有原型之间的距离度量,以便于减轻分布不确定性。最后,我们开发了一个集合预测网络(EPN),该网络(EPN)包含FRN和DMN的输出以进行最终的CVR预测。在这个阶段,我们冻结了FRN并用最近一段时间的样品训练DMN和EPN,因此有效地缓解了分布差异。据我们所知,这是在小规模推荐方案中针对DDF问题的CVR预测第一次研究。实验结果对现实世界数据集验证了我们的MetacVR和Online A / B测试的优越性也表明我们的模型在PCVR上实现了11.92%的令人印象深刻的收益和GMV的8.64%。
translated by 谷歌翻译
促销活动在电子商务平台上变得更加重要和普遍,以吸引客户和提升销售。但是,推荐系统中的点击率(CTR)预测方法无法处理此类情况,因为:1)他们无法概括为服务,因为在线数据分布是不确定的,因为可能正在推出的促销潜在的促销; 2)在不够重视方案信号的情况下,它们无法学习在每个场景中共存的不同特征表示模式。在这项工作中,我们提出了方案自适应混合的专家(相同),这是一个简单而有效的模型,用于促销和正常情况。从技术上讲,它通过采用多个专家来学习专家来遵循专家混合的想法,这些特征表示通过注意机制通过特征门控网络(FGN)进行调制。为了获得高质量的表示,我们设计了一个堆叠的并行关注单元(SPAU),以帮助每个专家更好地处理用户行为序列。为了解决分布不确定性,从时间序列预测的角度精确地设计了一组场景信号,并馈入FGN,其输出与来自每个专家的特征表示连接,以学会注意。因此,特征表示的混合是自适应的场景和用于最终的CTR预测。通过这种方式,每个专家都可以学习鉴别的表示模式。据我们所知,这是第一次推广感知CTR预测的研究。实验结果对现实世界数据集验证了同一的优势。在线A / B测试也表现出同样的促销期间在CTR上的显着增益和5.94%的IPV,分别在正常日内为3.93%和6.57%。
translated by 谷歌翻译
在点击率(CTR)预测方案中,用户的顺序行为很好地利用来捕获最近文献中的用户兴趣。然而,尽管正在广泛研究,但这些顺序方法仍然存在三个限制。首先,现有方法主要利用对用户行为的注意,这并不总是适用于CTR预测,因为用户经常点击与任何历史行为无关的新产品。其次,在真实场景中,很久以前存在许多具有运营的用户,但最近的次数相对不活跃。因此,难以通过早期行为精确地捕获用户的当前偏好。第三,不同特征子空间中用户历史行为的多个表示主要被忽略。为了解决这些问题,我们提出了一种多互动关注网络(Mian),全面提取各种细粒度特征之间的潜在关系(例如,性别,年龄和用户档案)。具体而言,MIAN包含多交互式层(MIL),其集成了三个本地交互模块,通过顺序行为捕获用户偏好的多个表示,并同时利用细粒度的用户特定的以及上下文信息。此外,我们设计了一个全局交互模块(GIM)来学习高阶交互,平衡多个功能的不同影响。最后,脱机实验结果来自三个数据集,以及在大型推荐系统中的在线A / B测试,展示了我们提出的方法的有效性。
translated by 谷歌翻译
在推荐系统中,一个普遍的挑战是冷门问题,在系统中,相互作用非常有限。为了应对这一挑战,最近,许多作品将元优化的想法介绍到建议方案中,即学习仅通过过去的几个交互项目来学习用户偏好。核心想法是为所有用户学习全局共享的元启动参数,并分别为每个用户迅速调整其本地参数。他们的目的是在各种用户的偏好学习中得出一般知识,以便通过博学的先验和少量培训数据迅速适应未来的新用户。但是,以前的作品表明,推荐系统通常容易受到偏见和不公平的影响。尽管元学习成功地通过冷启动提高了推荐性能,但公平性问题在很大程度上被忽略了。在本文中,我们提出了一个名为Clover的全面的公平元学习框架,以确保元学习的推荐模型的公平性。我们系统地研究了三种公平性 - 个人公平,反事实公平和推荐系统中的群体公平,并建议通过多任务对抗学习方案满足所有三种类型。我们的框架提供了一种通用的培训范式,适用于不同的元学习推荐系统。我们证明了三叶草对三个现实世界数据集的代表性元学习用户偏好估计器的有效性。经验结果表明,三叶草可以实现全面的公平性,而不会恶化整体的冷淡建议性能。
translated by 谷歌翻译
在多种方案中,多幕科建议专门为用户检索相关项目,这在工业推荐系统中无处不在。这些方案享有用户和项目中的一部分重叠,而不同方案的分布则不同。多阶段建模的关键点是有效地最大程度地利用全幕纳罗来信息,并在多种情况下为用户和项目生成适应性表示。我们总结了三个实用挑战,这些挑战无法很好地解决多幕科建模:(1)在多种情况下缺乏细粒度和脱钩的信息传输控制。 (2)整个空间样品的开发不足。 (3)项目的多幕科代表性分解问题。在本文中,我们提出了一种情景自适应和自我监督(SASS)模型,以解决上述三个挑战。具体而言,我们使用场景自适应门单元设计了多层场景自适应转移(ML-SAT)模块,以相当细粒度且脱钩的方式选择并融合从整个场景到单个场景的有效传输信息。为了充分利用整个空间样品的功能,引入了包括预训练和微调在内的两阶段训练过程。预训练阶段是基于场景监督的对比学习任务,并从标记和未标记的数据空间中绘制的培训样本。该模型是在用户端和项目方面对称创建的,因此我们可以在不同情况下获得项目的区分表示。公共和工业数据集的广泛实验结果证明了SASS模型比最先进的方法的优越性。该模型还可以在在线A/B测试中平均每位用户的观看时间提高8.0%以上。
translated by 谷歌翻译
工业推荐系统通常提出包含来自多个子系统的结果的混合列表。实际上,每个子系统都使用自己的反馈数据进行了优化,以避免不同子系统之间的干扰。但是,我们认为,由于\ textit {数据稀疏},此类数据使用可能会导致次优的在线性能。为了减轻此问题,我们建议从包含网络尺度和长期印象数据的\ textit {super-domain}中提取知识,并进一步协助在线推荐任务(下游任务)。为此,我们提出了一个新颖的工业\ textbf {k} nowl \ textbf {e} dge \ textbf {e} xtraction和\ textbf {p} lugging(\ textbf {keep})框架,这是一个两阶段的框架其中包括1)超级域上有监督的预训练知识提取模块,以及2)将提取的知识纳入下游模型的插件网络。这使得对在线推荐的逐步培训变得友好。此外,我们设计了一种有效的经验方法,用于在大规模工业系统中实施Keep时保持和介绍我们的动手经验。在两个现实世界数据集上进行的实验表明,保持可以实现有希望的结果。值得注意的是,Keep也已部署在阿里巴巴的展示广告系统上,带来了$+5.4 \%$ CTR和$+4.7 \%\%$ rpm的提升。
translated by 谷歌翻译
点击率(CTR)预测的目标是预测用户单击项目的可能性,在推荐系统中变得越来越重要。最近,一些具有自动从他/她的行为中提取用户兴趣的深度学习模型取得了巨大的成功。在这些工作中,注意机制用于选择用户在历史行为中感兴趣的项目,从而提高CTR预测指标的性能。通常,这些细心的模块可以通过使用梯度下降与基本预测变量共同训练。在本文中,我们将用户兴趣建模视为特征选择问题,我们称之为用户兴趣选择。对于这样一个问题,我们在包装法的框架下提出了一种新颖的方法,该方法被称为Meta-wrapper。更具体地说,我们使用可区分的模块作为包装运算符,然后将其学习问题重新提出为连续的二元优化。此外,我们使用元学习算法来求解优化并理论上证明其收敛性。同时,我们还提供了理论分析,以表明我们提出的方法1)效率基于包装器的特征选择,而2)可以更好地抵抗过度拟合。最后,在三个公共数据集上进行的广泛实验表明了我们方法在提高CTR预测的性能方面的优势。
translated by 谷歌翻译
特征交互已被识别为机器学习中的一个重要问题,这对于点击率(CTR)预测任务也是非常重要的。近年来,深度神经网络(DNN)可以自动从原始稀疏功能中学习隐式非线性交互,因此已广泛用于工业CTR预测任务。然而,在DNN中学到的隐式特征交互不能完全保留原始和经验特征交互的完整表示容量(例如,笛卡尔产品)而不会损失。例如,简单地尝试学习特征A和特征B <A,B>作为新特征的显式笛卡尔产品表示可以胜过先前隐式功能交互模型,包括基于分解机(FM)的模型及其变体。在本文中,我们提出了一个共同行动网络(CAN),以近似于显式成对特征交互,而不会引入太多的附加参数。更具体地,给出特征A及其相关的特征B,通过学习两组参数来建模它们的特征交互:1)嵌入特征A和2)以表示特征B的多层Perceptron(MLP)。近似通过通过特征B的MLP网络传递特征A的嵌入可以获得特征交互。我们将这种成对特征交互作为特征合作,并且这种共动网单元可以提供拟合复合物的非常强大的容量功能交互。公共和工业数据集的实验结果表明,可以优于最先进的CTR模型和笛卡尔产品方法。此外,可以在阿里巴巴的显示广告系统中部署,获得12 \%的CTR和8 \%关于每个Mille(RPM)的收入,这是对业务的巨大改进。
translated by 谷歌翻译
用户嵌入(用户的矢量化表示)对于推荐系统至关重要。已经提出了许多方法来为用户构建代表性,以找到用于检索任务的类似项目,并且已被证明在工业推荐系统中也有效。最近,人们发现使用多个嵌入式代表用户的能力,希望每个嵌入代表用户对某个主题的兴趣。通过多息表示,重要的是要对用户对不同主题的喜好进行建模以及偏好如何随时间变化。但是,现有方法要么无法估算用户对每个利息的亲和力,要么不合理地假设每个用户的每一个利息随时间而逐渐消失,从而损害了候选人检索的召回。在本文中,我们提出了多功能偏好(MIP)模型,这种方法不仅可以通过更有效地使用用户的顺序参与来为用户产生多种利益因此,可以按比例地从每个利息中检索候选人。在各种工业规模的数据集上进行了广泛的实验,以证明我们方法的有效性。
translated by 谷歌翻译
In this paper, we study item advertisements for small businesses. This application recommends prospective customers to specific items requested by businesses. From analysis, we found that the existing Recommender Systems (RS) were ineffective for small/new businesses with a few sales history. Training samples in RS can be highly biased toward popular businesses with sufficient sales and can decrease advertising performance for small businesses. We propose a meta-learning-based RS to improve advertising performance for small/new businesses and shops: Meta-Shop. Meta-Shop leverages an advanced meta-learning optimization framework and builds a model for a shop-level recommendation. It also integrates and transfers knowledge between large and small shops, consequently learning better features in small shops. We conducted experiments on a real-world E-commerce dataset and a public benchmark dataset. Meta-Shop outperformed a production baseline and the state-of-the-art RS models. Specifically, it achieved up to 16.6% relative improvement of Recall@1M and 40.4% relative improvement of nDCG@3 for user recommendations to new shops compared to the other RS models.
translated by 谷歌翻译
共享符号跨域顺序推荐(SCSR)任务旨在通过利用多个域中的混合用户行为推荐下一个项目。随着越来越多的用户倾向于在不同的平台上注册并与他人共享访问特定于域的服务,它正在引起极大的研究关注。现有关于SCSR的作品主要依赖于基于复发的神经网络(RNN)模型的采矿顺序模式,这些模型受到以下局限性:1)基于RNN的方法,基于RNN的方法绝大多数目标是发现单用户行为中的顺序依赖性。它们的表现不足以捕获SCSR中多个实体之间的关系。 2)所有现有方法通过潜在空间中的知识转移桥接两个域,并忽略显式的跨域图结构。 3)没有现有研究考虑项目之间的时间间隔信息,这对于表征不同项目和学习判别性表示的顺序建议至关重要。在这项工作中,我们提出了一种新的基于图的解决方案,即TIDA-GCN,以应对上述挑战。具体来说,我们首先将每个域中的用户和项目链接为图。然后,我们设计了一个域感知图形卷积网络,以学习用户特异性节点表示。为了充分说明用户对项目的域特异性偏好,进一步开发了两个有效的注意机制,以选择性地指导消息传递过程。此外,为了进一步增强项目和帐户级的表示学习,我们将时间间隔纳入消息传递中,并为学习项目的交互式特征设计一个帐户意识的自我发项模块。实验证明了我们提出的方法从各个方面的优越性。
translated by 谷歌翻译
在过去的几年中,短视频在淘宝等电子商务平台上见证了迅速的增长。为了确保内容的新鲜感,平台需要每天发布大量新视频,从而使传统的点击率(CTR)预测方法遇到了该项目冷启动问题。在本文中,我们提出了一种有效的图形引导功能传输系统的礼物,以完全利用加热视频的丰富信息,以补偿冷启动的视频。具体而言,我们建立了一个异质图,其中包含物理和语义链接,以指导从热视频到冷启动视频的功能传输过程。物理链接代表明确的关系,而语义链接衡量了两个视频的多模式表示的接近性。我们精心设计功能传输功能,以使图表上不同Metapaths的不同类型的转移功能(例如,ID表示和历史统计)。我们在大型现实世界数据集上进行了广泛的实验,结果表明,我们的礼品系统的表现明显优于SOTA方法,并在TAOBAO APP的主页上为CTR带来了6.82%的提升。
translated by 谷歌翻译
传统的工业推荐人通常在单一的业务领域培训,然后为此域名服务。但是,在大型商业平台中,通常情况下,推荐人需要为多个业务域提供点击率(CTR)预测。不同的域具有重叠的用户组和项目。因此,存在共性。由于特定用户组具有差异,并且用户行为可能在各种商业域中改变,因此还存在区别。区别导致特定于域的数据分布,使单个共享模型很难在所有域上运行良好。要学习一个有效且高效的CTR模型,可以同时处理多个域,我们呈现明星拓扑自适应推荐(Star)。具体而言,STAR具有星形拓扑,由共享中心参数和特定于域的参数组成。共享参数用于学习所有域的共性,以及域特定参数捕获域区分以进行更精细的预测。给定来自不同商业域的请求,Star可以根据域特征调节其参数。生产数据的实验结果验证了所提出的明星模型的优越性。自2020年以来,STAR已部署在阿里巴巴的显示广告系统中,从RPM获得平均8.0%的改进和6.0%(每米尔勒收入)。
translated by 谷歌翻译
在信息爆炸的时代,推荐系统通过促进内容探索在人们的日常生活中起着重要作用。众所周知,用户的活动性,即行为数量,倾向于遵循长尾分布,大多数用户的积极性低。在实践中,我们观察到,在联合培训后,尾巴用户的质量推荐率明显低于首席用户。我们进一步确定,由于数据有限,因此在尾巴用户上训练的模型仍然取得了较低的结果。尽管长尾分布在推荐系统中无处不在,但在研究和行业中,提高尾巴用户的推荐性能仍然仍然是挑战。直接应用长尾分配的相关方法可能有可能伤害首席用户的经验,这是不起作用的,因为一小部分具有高积极性的首席用户贡献了平台收入的一部分。在本文中,我们提出了一种新颖的方法,可以显着提高尾巴用户的建议性能,同时至少在基本模型上为首席用户提供至少可比的性能。这种方法的本质是一种新颖的梯度聚合技术,该技术将所有用户共享的常识知识分为主干模型,然后为Head用户和Tail用户个性化提供单独的插件预测网络。至于常识学习,我们利用因果关系理论的向后调整来消除梯度估计,从而掩盖了混杂因素的骨干训练,即用户的积极性。我们对两个公共建议基准数据集和一个从支撑台平台收集的大规模工业数据集进行了广泛的实验。实证研究验证了我们方法的合理性和有效性。
translated by 谷歌翻译
关于点击率(CTR)预测的最新研究通过对更长的用户行为序列进行建模,已达到新的水平。除其他外,两阶段的方法是用于工业应用的最先进的解决方案(SOTA)。两阶段方法首先训练检索模型,以事先截断长行为序列,然后使用截短序列训练CTR模型。但是,检索模型和CTR模型是分别训练的。因此,CTR模型中检索到的子序列不准确,它降低了最终性能。在本文中,我们提出了一个端到端范式来建模长行为序列,与现有模型相比,该序列能够实现卓越的性能以及出色的成本效益。我们的贡献是三倍:首先,我们提出了一个名为ETA-NET的基于哈希的有效目标(TA)网络,以基于低成本的位置操作来启用端到端的用户行为检索。提出的ETA-NET可以通过顺序数据建模的数量级来降低标准TA的复杂性。其次,我们建议将通用系统体系结构作为一种可行的解决方案,用于在工业系统上部署ETA-NET。特别是,与SOTA两阶段方法相比,ETA-NET已部署在TAOBAO的推荐系统上,并在CTR上带来了1.8%的升降机和3.1%的升降机(GMV)。第三,我们在离线数据集和在线A/B测试上进行了广泛的实验。结果证明,在CTR预测性能和在线成本效益方面,所提出的模型大大优于现有的CTR模型。 ETA-NET现在为TAOBAO的主要流量提供服务,每天为数亿用户提供服务。
translated by 谷歌翻译
为了开发有效的顺序推荐人,提出了一系列序列表示学习(SRL)方法来模拟历史用户行为。大多数现有的SRL方法都依赖于开发序列模型以更好地捕获用户偏好的明确项目ID。尽管在某种程度上有效,但由于通过明确建模项目ID的限制,这些方法很难转移到新的建议方案。为了解决这个问题,我们提出了一种新颖的通用序列表示方法,名为UNISREC。提出的方法利用项目的文本在不同的建议方案中学习可转移表示形式。为了学习通用项目表示形式,我们设计了一个基于参数美白和Experts的混合物增强的适配器的轻巧项目编码体系结构。为了学习通用序列表示,我们通过抽样多域负面因素介绍了两个对比的预训练任务。借助预训练的通用序列表示模型,我们的方法可以在电感或跨传导设置下以参数有效的方式有效地传输到新的推荐域或平台。在现实世界数据集上进行的广泛实验证明了该方法的有效性。尤其是,我们的方法还导致跨平台环境中的性能提高,显示了所提出的通用SRL方法的强可传递性。代码和预培训模型可在以下网址获得:https://github.com/rucaibox/unisrec。
translated by 谷歌翻译
很少有图像分类是一个具有挑战性的问题,旨在仅基于少量培训图像来达到人类的识别水平。少数图像分类的一种主要解决方案是深度度量学习。这些方法是,通过将看不见的样本根据距离的距离进行分类,可在强大的深神经网络中学到的嵌入空间中看到的样品,可以避免以少数图像分类的少数训练图像过度拟合,并实现了最新的图像表现。在本文中,我们提供了对深度度量学习方法的最新审查,以进行2018年至2022年的少量图像分类,并根据度量学习的三个阶段将它们分为三组,即学习功能嵌入,学习课堂表示和学习距离措施。通过这种分类法,我们确定了他们面临的不同方法和问题的新颖性。我们通过讨论当前的挑战和未来趋势进行了少量图像分类的讨论。
translated by 谷歌翻译
跨域冷启动推荐是推荐系统越来越新兴的问题。现有的作品主要专注于解决跨域用户推荐或冷启动内容推荐。但是,当新域在早期发展时,它具有类似于源域的潜在用户,但互动较少。从源域中学习用户的偏好并将其转移到目标域中是至关重要的,特别是在具有有限用户反馈的新到达内容上。为了弥合这一差距,我们提出了一个自训练的跨域用户偏好学习(夫妻)框架,针对具有各种语义标签的冷启动推荐,例如视频的项目或视频类型。更具体地,我们考虑三个级别的偏好,包括用户历史,用户内容和用户组提供可靠的推荐。利用由域感知顺序模型表示的用户历史,将频率编码器应用于用于用户内容偏好学习的底层标记。然后,建议具有正交节点表示的分层存储器树以进一步概括域域的用户组偏好。整个框架以一种对比的方式更新,以先进先出(FIFO)队列获得更具独特的表示。两个数据集的广泛实验展示了用户和内容冷启动情况的夫妇效率。通过部署在线A / B一周测试,我们表明夫妇的点击率(CTR)优于淘宝应用程序的其他基线。现在该方法在线为跨域冷微视频推荐服务。
translated by 谷歌翻译
学习捕获特征关系有效,有效地是现代推荐系统的点击率(CTR)预测的必要条件。大多数现有的CTR预测方法通过繁琐的手动设计的低阶交互或通过不灵活和低效的高阶交互来模型这样的关系,这两者都需要额外的DNN模块进行隐式交互建模。在本文中,我们提出了一种新颖的插件操作,动态参数化操作(DPO),以便明智地学习显式和隐式交互实例。我们认为DPO进入DNN模块和注意力模块可以分别有利于CTR预测中的两个主要任务,增强了基于特征的建模和改进用户行为建模的适应性与实例 - 方向性。我们的动态参数化网络在公共数据集和现实世界生产数据集的离线实验中显着优于最先进的方法,以及在线A / B测试。此外,建议的动态参数化网络已经在世界上最大的电子商务公司之一的排名系统中部署,服务于数亿个活跃用户的主要流量。
translated by 谷歌翻译
顺序推荐系统通过捕获用户的兴趣漂移来显示有效的建议。有两组现有的顺序模型:以用户和项目为中心的模型。以用户为中心的模型根据每个用户的顺序消费历史记录来捕获个性化的利息漂移,但没有明确考虑用户对项目的利益是否超出培训时间,即利息可持续性。另一方面,以项目为中心的模型考虑了用户在培训时间后的一般利益是否维持,但不是个性化的。在这项工作中,我们提出了一个推荐系统,将两类模型的优势占据优势。我们提出的模型捕获了个性化的利息可持续性,表明每个用户对物品的利益是否会超出培训时间。我们首先制定一项任务,该任务需要根据用户的消费历史记录预测培训时间中每个用户将消耗哪些项目。然后,我们提出简单而有效的方案,以增强用户的稀疏消费历史记录。广泛的实验表明,所提出的模型在11个现实世界数据集上的表现优于10个基线模型。这些代码可在https://github.com/dmhyun/peris上找到。
translated by 谷歌翻译