比较概率分布是许多机器学习算法的关键。最大平均差异(MMD)和最佳运输距离(OT)是在过去几年吸引丰富的关注的概率措施之间的两类距离。本文建立了一些条件,可以通过MMD规范控制Wassersein距离。我们的作品受到压缩统计学习(CSL)理论的推动,资源有效的大规模学习的一般框架,其中训练数据总结在单个向量(称为草图)中,该训练数据捕获与所考虑的学习任务相关的信息。在CSL中的现有结果启发,我们介绍了H \“较旧的较低限制的等距属性(H \”较旧的LRIP)并表明这家属性具有有趣的保证对压缩统计学习。基于MMD与Wassersein距离之间的关系,我们通过引入和研究学习任务的Wassersein可读性的概念来提供压缩统计学习的保证,即概率分布之间的某些特定于特定的特定度量,可以由Wassersein界定距离。
translated by 谷歌翻译
在包括生成建模的各种机器学习应用中的两个概率措施中,已经证明了切片分歧的想法是成功的,并且包括计算两种测量的一维随机投影之间的“基地分歧”的预期值。然而,这种技术的拓扑,统计和计算后果尚未完整地确定。在本文中,我们的目标是弥合这种差距并导出切片概率分歧的各种理论特性。首先,我们表明切片保留了公制公理和分歧的弱连续性,这意味着切片分歧将共享相似的拓扑性质。然后,我们在基本发散属于积分概率度量类别的情况下精确结果。另一方面,我们在轻度条件下建立了切片分歧的样本复杂性并不依赖于问题尺寸。我们终于将一般结果应用于几个基地分歧,并说明了我们对合成和实际数据实验的理论。
translated by 谷歌翻译
概率分布之间的差异措施,通常被称为统计距离,在概率理论,统计和机器学习中普遍存在。为了在估计这些距离的距离时,对维度的诅咒,最近的工作已经提出了通过带有高斯内核的卷积在测量的分布中平滑局部不规则性。通过该框架的可扩展性至高维度,我们研究了高斯平滑$ P $ -wassersein距离$ \ mathsf {w} _p ^ {(\ sigma)} $的结构和统计行为,用于任意$ p \ GEQ 1 $。在建立$ \ mathsf {w} _p ^ {(\ sigma)} $的基本度量和拓扑属性之后,我们探索$ \ mathsf {w} _p ^ {(\ sigma)}(\ hat {\ mu} _n,\ mu)$,其中$ \ hat {\ mu} _n $是$ n $独立观察的实证分布$ \ mu $。我们证明$ \ mathsf {w} _p ^ {(\ sigma)} $享受$ n ^ { - 1/2} $的参数经验融合速率,这对比$ n ^ { - 1 / d} $率对于未平滑的$ \ mathsf {w} _p $ why $ d \ geq 3 $。我们的证明依赖于控制$ \ mathsf {w} _p ^ {(\ sigma)} $ by $ p $ th-sting spoollow sobolev restion $ \ mathsf {d} _p ^ {(\ sigma)} $并导出限制$ \ sqrt {n} \,\ mathsf {d} _p ^ {(\ sigma)}(\ hat {\ mu} _n,\ mu)$,适用于所有尺寸$ d $。作为应用程序,我们提供了使用$ \ mathsf {w} _p ^ {(\ sigma)} $的两个样本测试和最小距离估计的渐近保证,使用$ p = 2 $的实验使用$ \ mathsf {d} _2 ^ {(\ sigma)} $。
translated by 谷歌翻译
本文介绍了一种新的基于仿真的推理程序,以对访问I.I.D. \ samples的多维概率分布进行建模和样本,从而规避明确建模密度函数或设计Markov Chain Monte Carlo的通常方法。我们提出了一个称为可逆的Gromov-monge(RGM)距离的新概念的距离和同构的动机,并研究了RGM如何用于设计新的转换样本,以执行基于模拟的推断。我们的RGM采样器还可以估计两个异质度量度量空间之间的最佳对齐$(\ cx,\ mu,c _ {\ cx})$和$(\ cy,\ cy,\ nu,c _ {\ cy})$从经验数据集中,估计的地图大约将一个量度$ \ mu $推向另一个$ \ nu $,反之亦然。我们研究了RGM距离的分析特性,并在轻度条件下得出RGM等于经典的Gromov-Wasserstein距离。奇怪的是,与Brenier的两极分解结合了连接,我们表明RGM采样器以$ C _ {\ cx} $和$ C _ {\ cy} $的正确选择诱导了强度同构的偏见。研究了有关诱导采样器的收敛,表示和优化问题的统计率。还展示了展示RGM采样器有效性的合成和现实示例。
translated by 谷歌翻译
我们在非参数二进制分类的一个对抗性训练问题之间建立了等价性,以及规范器是非识别范围功能的正则化风险最小化问题。由此产生的正常风险最小化问题允许在图像分析和基于图形学习中常常研究的$ L ^ 1 + $(非本地)$ \ Operatorvers {TV} $的精确凸松弛。这种重构揭示了丰富的几何结构,这反过来允许我们建立原始问题的最佳解决方案的一系列性能,包括存在最小和最大解决方案(以合适的意义解释),以及常规解决方案的存在(也以合适的意义解释)。此外,我们突出了对抗性训练和周长最小化问题的联系如何为涉及周边/总变化的正规风险最小化问题提供一种新颖的直接可解释的统计动机。我们的大部分理论结果与用于定义对抗性攻击的距离无关。
translated by 谷歌翻译
所有著名的机器学习算法构成了受监督和半监督的学习工作,只有在一个共同的假设下:培训和测试数据遵循相同的分布。当分布变化时,大多数统计模型必须从新收集的数据中重建,对于某些应用程序,这些数据可能是昂贵或无法获得的。因此,有必要开发方法,以减少在相关领域中可用的数据并在相似领域中进一步使用这些数据,从而减少需求和努力获得新的标签样品。这引起了一个新的机器学习框架,称为转移学习:一种受人类在跨任务中推断知识以更有效学习的知识能力的学习环境。尽管有大量不同的转移学习方案,但本调查的主要目的是在特定的,可以说是最受欢迎的转移学习中最受欢迎的次级领域,概述最先进的理论结果,称为域适应。在此子场中,假定数据分布在整个培训和测试数据中发生变化,而学习任务保持不变。我们提供了与域适应性问题有关的现有结果的首次最新描述,该结果涵盖了基于不同统计学习框架的学习界限。
translated by 谷歌翻译
在概率空间或分销回归方面的学习功能的问题正在对机器学习社区产生重大兴趣。此问题背后的一个关键挑战是确定捕获基础功能映射的所有相关属性的合适表示形式。内核平均嵌入式提供了一种原则性的分布回归方法,该方法在概率水平上提高了内核诱导的输入域的相似性。该策略有效地解决了问题的两阶段抽样性质,使人们能够得出具有强大统计保证的估计器,例如普遍的一致性和过度的风险界限。但是,内核平均值嵌入在最大平均差异(MMD)上隐含地铰接,这是概率的度量,可能无法捕获分布之间的关键几何关系。相反,最佳运输(OT)指标可能更具吸引力。在这项工作中,我们提出了一个基于OT的分布回归估计器。我们建立在切成薄片的Wasserstein距离上,以获得基于OT的表示。我们基于这种表示,我们研究了内核脊回归估计量的理论特性,我们证明了普遍的一致性和过多的风险界限。初步实验通过显示提出方法的有效性并将其与基于MMD的估计器进行比较,以补充我们的理论发现。
translated by 谷歌翻译
We consider the problem of estimating the optimal transport map between a (fixed) source distribution $P$ and an unknown target distribution $Q$, based on samples from $Q$. The estimation of such optimal transport maps has become increasingly relevant in modern statistical applications, such as generative modeling. At present, estimation rates are only known in a few settings (e.g. when $P$ and $Q$ have densities bounded above and below and when the transport map lies in a H\"older class), which are often not reflected in practice. We present a unified methodology for obtaining rates of estimation of optimal transport maps in general function spaces. Our assumptions are significantly weaker than those appearing in the literature: we require only that the source measure $P$ satisfies a Poincar\'e inequality and that the optimal map be the gradient of a smooth convex function that lies in a space whose metric entropy can be controlled. As a special case, we recover known estimation rates for bounded densities and H\"older transport maps, but also obtain nearly sharp results in many settings not covered by prior work. For example, we provide the first statistical rates of estimation when $P$ is the normal distribution and the transport map is given by an infinite-width shallow neural network.
translated by 谷歌翻译
最大平均差异(MMD)(例如内核Stein差异(KSD))已成为广泛应用的中心,包括假设测试,采样器选择,分布近似和变异推断。在每种情况下,这些基于内核的差异度量都需要(i)(i)将目标p与其他概率度量分开,甚至(ii)控制弱收敛到P。在本文中,我们得出了新的足够和必要的条件,以确保(i) (ii)。对于可分开的度量空间上的MMD,我们表征了那些将BOCHNER嵌入量度分开的内核,并引入了简单条件,以将所有措施用无限的内核分开,并控制与有界内核的收敛。我们在$ \ mathbb {r}^d $上使用这些结果来实质性地扩大了KSD分离和收敛控制的已知条件,并开发了已知的第一个KSD,以恰好将弱收敛到P。我们的假设检验,测量和改善样本质量以及用Stein变异梯度下降进行抽样的结果。
translated by 谷歌翻译
Quantifying the deviation of a probability distribution is challenging when the target distribution is defined by a density with an intractable normalizing constant. The kernel Stein discrepancy (KSD) was proposed to address this problem and has been applied to various tasks including diagnosing approximate MCMC samplers and goodness-of-fit testing for unnormalized statistical models. This article investigates a convergence control property of the diffusion kernel Stein discrepancy (DKSD), an instance of the KSD proposed by Barp et al. (2019). We extend the result of Gorham and Mackey (2017), which showed that the KSD controls the bounded-Lipschitz metric, to functions of polynomial growth. Specifically, we prove that the DKSD controls the integral probability metric defined by a class of pseudo-Lipschitz functions, a polynomial generalization of Lipschitz functions. We also provide practical sufficient conditions on the reproducing kernel for the stated property to hold. In particular, we show that the DKSD detects non-convergence in moments with an appropriate kernel.
translated by 谷歌翻译
给定$ n $数据点$ \ mathbb {r}^d $中的云,请考虑$ \ mathbb {r}^d $的$ m $ dimensional子空间预计点。当$ n,d $增长时,这一概率分布的集合如何?我们在零模型下考虑了这个问题。标准高斯矢量,重点是渐近方案,其中$ n,d \ to \ infty $,$ n/d \ to \ alpha \ in(0,\ infty)$,而$ m $是固定的。用$ \ mathscr {f} _ {m,\ alpha} $表示$ \ mathbb {r}^m $中的一组概率分布,在此限制中以低维度为单位,我们在此限制中建立了新的内部和外部界限$ \ mathscr {f} _ {m,\ alpha} $。特别是,我们将$ \ mathscr {f} _ {m,\ alpha} $的Wasserstein Radius表征为对数因素,并以$ M = 1 $确切确定它。我们还通过kullback-leibler差异和r \'{e} NYI信息维度证明了尖锐的界限。上一个问题已应用于无监督的学习方法,例如投影追求和独立的组件分析。我们介绍了与监督学习相关的相同问题的版本,并证明了尖锐的沃斯坦斯坦半径绑定。作为一个应用程序,我们在具有$ M $隐藏神经元的两层神经网络的插值阈值上建立了上限。
translated by 谷歌翻译
我们考虑了一个通用的非线性模型,其中信号是未知(可能增加的,可能增加的特征数量)的有限混合物,该特征是由由真实非线性参数参数化的连续字典发出的。在连续或离散设置中使用高斯(可能相关)噪声观察信号。我们提出了一种网格优化方法,即一种不使用参数空间上任何离散化方案的方法来估计特征的非线性参数和混合物的线性参数。我们使用有关离网方法的几何形状的最新结果,在真实的基础非线性参数上给出最小的分离,以便可以构建插值证书函数。还使用尾部界限,用于高斯过程的上流,我们将预测误差限制为高概率。假设可以构建证书函数,我们的预测误差绑定到日志 - 因线性回归模型中LASSO预测器所达到的速率类似。我们还建立了收敛速率,以高概率量化线性和非线性参数的估计质量。
translated by 谷歌翻译
本文涉及高维度中经验措施的收敛。我们提出了一类新的指标,并表明在这样的指标下,融合不受维度的诅咒(COD)。这样的特征对于高维分析至关重要,并且与经典指标相反({\ it,例如,瓦斯泰尔距离)。所提出的指标源自最大平均差异,我们通过提出选择测试功能空间的特定标准来概括,以确保没有COD的属性。因此,我们将此类别称为广义最大平均差异(GMMD)。所选测试功能空间的示例包括复制的内核希尔伯特空间,巴伦空间和流动诱导的功能空间。提出了所提出的指标的三种应用:1。在随机变量的情况下,经验度量的收敛; 2. $ n $粒子系统的收敛到麦基·维拉索夫随机微分方程的解决方案; 3.构建$ \ varepsilon $ -NASH平衡,用于均质$ n $ - 玩家游戏的平均范围限制。作为副产品,我们证明,考虑到接近GMMD测量的目标分布和目标分布的一定表示,我们可以在Wasserstein距离和相对熵方面生成接近目标的分布。总体而言,我们表明,所提出的指标类是一种强大的工具,可以在没有COD的高维度中分析经验度量的收敛性。
translated by 谷歌翻译
我们提出了一种统一的技术,用于顺序估计分布之间的凸面分歧,包括内核最大差异等积分概率度量,$ \ varphi $ - 像Kullback-Leibler发散,以及最佳运输成本,例如Wassersein距离的权力。这是通过观察到经验凸起分歧(部分有序)反向半角分离的实现来实现的,而可交换过滤耦合,其具有这些方法的最大不等式。这些技术似乎是对置信度序列和凸分流的现有文献的互补和强大的补充。我们构建一个离线到顺序设备,将各种现有的离线浓度不等式转换为可以连续监测的时间均匀置信序列,在任意停止时间提供有效的测试或置信区间。得到的顺序边界仅在相应的固定时间范围内支付迭代对数价格,保留对问题参数的相同依赖性(如适用的尺寸或字母大小)。这些结果也适用于更一般的凸起功能,如负差分熵,实证过程的高度和V型统计。
translated by 谷歌翻译
我们研究了随着正则化参数的消失,差异调节的最佳转运的收敛性消失。一般差异的尖锐费率包括相对熵或$ l^{p} $正则化,一般运输成本和多边界问题。使用量化和Martingale耦合的新方法适用于非紧密的边际和实现,特别是对于所有有限$(2+ \ delta)$ - 时刻的边缘的熵正规化2-wasserstein距离的尖锐前阶项。
translated by 谷歌翻译
我们研究了非参数混合模型中的一致性以及回归的密切相关的混合物(也称为混合回归)模型,其中允许回归函数是非参数的,并且假定误差分布是高斯密度的卷积。我们在一般条件下构建统一的一致估计器,同时突出显示了将现有的点一致性结果扩展到均匀结果的几个疼痛点。最终的分析事实并非如此,并且在此过程中开发了几种新颖的技术工具。在混合回归的情况下,我们证明了回归函数的$ l^1 $收敛性,同时允许组件回归函数任意地相交,这带来了其他技术挑战。我们还考虑对一般(即非跨方向)非参数混合物的概括。
translated by 谷歌翻译
Wassersein距离,植根于最佳运输(OT)理论,是在统计和机器学习的各种应用程序之间的概率分布之间的流行差异测量。尽管其结构丰富,但效用,但Wasserstein距离对所考虑的分布中的异常值敏感,在实践中阻碍了适用性。灵感来自Huber污染模型,我们提出了一种新的异常值 - 强大的Wasserstein距离$ \ mathsf {w} _p ^ \ varepsilon $,它允许从每个受污染的分布中删除$ \ varepsilon $异常块。与以前考虑的框架相比,我们的配方达到了高度定期的优化问题,使其更好地分析。利用这一点,我们对$ \ mathsf {w} _p ^ \ varepsilon $的彻底理论研究,包括最佳扰动,规律性,二元性和统计估算和鲁棒性结果的表征。特别是,通过解耦优化变量,我们以$ \ mathsf {w} _p ^ \ varepsilon $到达一个简单的双重形式,可以通过基于标准的基于二元性的OT响音器的基本修改来实现。我们通过应用程序来说明我们的框架的好处,以与受污染的数据集进行生成建模。
translated by 谷歌翻译
隐式和明确的生成建模的几种作品经验观察到特征学习鉴别器在模型的样本质量方面优于固定内核鉴别器。我们在使用函数类$ \ mathcal {f} _2 $和$ \ mathcal {f} _1 $分别在使用函数类$ \ mathcal {f} _2 $分别提供分离结果。 。特别地,我们构造了通过固定内核$(\ Mathcal {F} _2)$积分概率度量(IPM)和高维度的超积分(\ Mathcal {F} _2)和高维度差异(SD)的超领域的分布对。但是可以是由他们的特征学习($ \ mathcal {f} _1 $)对应物歧视。为了进一步研究分离,我们提供$ \ mathcal {f} _1 $和$ \ mathcal {f} _2 $ IMM之间的链接。我们的工作表明,固定内核鉴别者的表现比其特征学习对应者更糟糕,因为它们的相应度量较弱。
translated by 谷歌翻译
We propose a framework for analyzing and comparing distributions, which we use to construct statistical tests to determine if two samples are drawn from different distributions. Our test statistic is the largest difference in expectations over functions in the unit ball of a reproducing kernel Hilbert space (RKHS), and is called the maximum mean discrepancy (MMD). We present two distributionfree tests based on large deviation bounds for the MMD, and a third test based on the asymptotic distribution of this statistic. The MMD can be computed in quadratic time, although efficient linear time approximations are available. Our statistic is an instance of an integral probability metric, and various classical metrics on distributions are obtained when alternative function classes are used in place of an RKHS. We apply our two-sample tests to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where they perform strongly. Excellent performance is also obtained when comparing distributions over graphs, for which these are the first such tests.
translated by 谷歌翻译
这项工作讨论了如何通过链接技术导致监督学习算法的预期概括误差的上限。通过开发一个一般的理论框架,我们根据损失函数的规律性及其链式对应物建立二元性界限,这可以通过将损失从损失从其梯度提升到其梯度来获得。这使我们能够根据Wasserstein距离和其他概率指标重新衍生从文献中绑定的链式相互信息,并获得新颖的链接信息理论理论范围。我们在一些玩具示例中表明,链式的概括结合可能比其标准对应物明显更紧,尤其是当算法选择的假设的分布非常集中时。关键字:概括范围;链信息理论范围;相互信息;瓦斯堡的距离; Pac-Bayes。
translated by 谷歌翻译