Developing autonomous vehicles (AVs) helps improve the road safety and traffic efficiency of intelligent transportation systems (ITS). Accurately predicting the trajectories of traffic participants is essential to the decision-making and motion planning of AVs in interactive scenarios. Recently, learning-based trajectory predictors have shown state-of-the-art performance in highway or urban areas. However, most existing learning-based models trained with fixed datasets may perform poorly in continuously changing scenarios. Specifically, they may not perform well in learned scenarios after learning the new one. This phenomenon is called "catastrophic forgetting". Few studies investigate trajectory predictions in continuous scenarios, where catastrophic forgetting may happen. To handle this problem, first, a novel continual learning (CL) approach for vehicle trajectory prediction is proposed in this paper. Then, inspired by brain science, a dynamic memory mechanism is developed by utilizing the measurement of traffic divergence between scenarios, which balances the performance and training efficiency of the proposed CL approach. Finally, datasets collected from different locations are used to design continual training and testing methods in experiments. Experimental results show that the proposed approach achieves consistently high prediction accuracy in continuous scenarios without re-training, which mitigates catastrophic forgetting compared to non-CL approaches. The implementation of the proposed approach is publicly available at https://github.com/BIT-Jack/D-GSM
translated by 谷歌翻译
准确的车辆轨迹预测对于可靠的自动驾驶至关重要。为了保持一致的性能作为围绕不同城市的车辆,适应不断变化的交通环境并实现终身轨迹预测模型至关重要。为了实现它,灾难性的遗忘是要解决的主要问题。本文首先提出了一种基于条件Kullback-Leibler发散的分歧测量方法,以评估不同驾驶环境中的时空依赖差异。然后基于生成重播,开发了一种新颖的终身车辆轨迹预测框架。该框架包括条件生成模型和车辆轨迹预测模型。条件生成模型是一种在车辆的位置配置上的生成对抗性网络。在学习和合并不同城市车辆的轨迹分布之后,代表模型将轨迹重放了以前的采样作为输入,减轻了灾难性的遗忘。车辆轨迹预测模型由重放的轨迹训练,并在访问的城市实现一致的预测性能。终身实验设置是在四个开放数据集中建立,包括五个任务。为不同的任务计算了时尚依赖性发散。即使这些分歧,所提出的框架也表现出终身学习能力,并在所有任务中实现一致的性能。
translated by 谷歌翻译
相应地预测周围交通参与者的未来状态,并计划安全,平稳且符合社会的轨迹对于自动驾驶汽车至关重要。当前的自主驾驶系统有两个主要问题:预测模块通常与计划模块解耦,并且计划的成本功能很难指定和调整。为了解决这些问题,我们提出了一个端到端的可区分框架,该框架集成了预测和计划模块,并能够从数据中学习成本函数。具体而言,我们采用可区分的非线性优化器作为运动计划者,该运动计划将神经网络给出的周围剂的预测轨迹作为输入,并优化了自动驾驶汽车的轨迹,从而使框架中的所有操作都可以在框架中具有可观的成本,包括成本功能权重。提出的框架经过大规模的现实驾驶数据集进行了训练,以模仿整个驾驶场景中的人类驾驶轨迹,并在开环和闭环界面中进行了验证。开环测试结果表明,所提出的方法的表现优于各种指标的基线方法,并提供以计划为中心的预测结果,从而使计划模块能够输出接近人类的轨迹。在闭环测试中,提出的方法表明能够处理复杂的城市驾驶场景和鲁棒性,以抵抗模仿学习方法所遭受的分配转移。重要的是,我们发现计划和预测模块的联合培训比在开环和闭环测试中使用单独的训练有素的预测模块进行计划要比计划更好。此外,消融研究表明,框架中的可学习组件对于确保计划稳定性和性能至关重要。
translated by 谷歌翻译
Graph learning is a popular approach for performing machine learning on graph-structured data. It has revolutionized the machine learning ability to model graph data to address downstream tasks. Its application is wide due to the availability of graph data ranging from all types of networks to information systems. Most graph learning methods assume that the graph is static and its complete structure is known during training. This limits their applicability since they cannot be applied to problems where the underlying graph grows over time and/or new tasks emerge incrementally. Such applications require a lifelong learning approach that can learn the graph continuously and accommodate new information whilst retaining previously learned knowledge. Lifelong learning methods that enable continuous learning in regular domains like images and text cannot be directly applied to continuously evolving graph data, due to its irregular structure. As a result, graph lifelong learning is gaining attention from the research community. This survey paper provides a comprehensive overview of recent advancements in graph lifelong learning, including the categorization of existing methods, and the discussions of potential applications and open research problems.
translated by 谷歌翻译
近年来,道路安全引起了智能运输系统领域的研究人员和从业者的重大关注。作为最常见的道路用户群体之一,行人由于其不可预测的行为和运动而导致令人震惊,因为车辆行人互动的微妙误解可以很容易地导致风险的情况或碰撞。现有方法使用预定义的基于碰撞的模型或人类标签方法来估计行人的风险。这些方法通常受到他们的概括能力差,缺乏对自我车辆和行人之间的相互作用的限制。这项工作通过提出行人风险级预测系统来解决所列问题。该系统由三个模块组成。首先,收集车辆角度的行人数据。由于数据包含关于自我车辆和行人的运动的信息,因此可以简化以交互感知方式预测时空特征的预测。使用长短短期存储器模型,行人轨迹预测模块预测后续五个框架中的时空特征。随着预测的轨迹遵循某些交互和风险模式,采用混合聚类和分类方法来探讨时空特征中的风险模式,并使用学习模式训练风险等级分类器。在预测行人的时空特征并识别相应的风险水平时,确定自我车辆和行人之间的风险模式。实验结果验证了PRLP系统的能力,以预测行人的风险程度,从而支持智能车辆的碰撞风险评估,并为车辆和行人提供安全警告。
translated by 谷歌翻译
Making safe and human-like decisions is an essential capability of autonomous driving systems and learning-based behavior planning is a promising pathway toward this objective. Distinguished from existing learning-based methods that directly output decisions, this work introduces a predictive behavior planning framework that learns to predict and evaluate from human driving data. Concretely, a behavior generation module first produces a diverse set of candidate behaviors in the form of trajectory proposals. Then the proposed conditional motion prediction network is employed to forecast other agents' future trajectories conditioned on each trajectory proposal. Given the candidate plans and associated prediction results, we learn a scoring module to evaluate the plans using maximum entropy inverse reinforcement learning (IRL). We conduct comprehensive experiments to validate the proposed framework on a large-scale real-world urban driving dataset. The results reveal that the conditional prediction model is able to forecast multiple possible future trajectories given a candidate behavior and the prediction results are reactive to different plans. Moreover, the IRL-based scoring module can properly evaluate the trajectory proposals and select close-to-human ones. The proposed framework outperforms other baseline methods in terms of similarity to human driving trajectories. Moreover, we find that the conditional prediction model can improve both prediction and planning performance compared to the non-conditional model, and learning the scoring module is critical to correctly evaluating the candidate plans to align with human drivers.
translated by 谷歌翻译
人类的持续学习(CL)能力与稳定性与可塑性困境密切相关,描述了人类如何实现持续的学习能力和保存的学习信息。自发育以来,CL的概念始终存在于人工智能(AI)中。本文提出了对CL的全面审查。与之前的评论不同,主要关注CL中的灾难性遗忘现象,本文根据稳定性与可塑性机制的宏观视角来调查CL。类似于生物对应物,“智能”AI代理商应该是I)记住以前学到的信息(信息回流); ii)不断推断新信息(信息浏览:); iii)转移有用的信息(信息转移),以实现高级CL。根据分类学,评估度量,算法,应用以及一些打开问题。我们的主要贡献涉及I)从人工综合情报层面重新检查CL; ii)在CL主题提供详细和广泛的概述; iii)提出一些关于CL潜在发展的新颖思路。
translated by 谷歌翻译
“轨迹”是指由地理空间中的移动物体产生的迹线,通常由一系列按时间顺序排列的点表示,其中每个点由地理空间坐标集和时间戳组成。位置感应和无线通信技术的快速进步使我们能够收集和存储大量的轨迹数据。因此,许多研究人员使用轨迹数据来分析各种移动物体的移动性。在本文中,我们专注于“城市车辆轨迹”,这是指城市交通网络中车辆的轨迹,我们专注于“城市车辆轨迹分析”。城市车辆轨迹分析提供了前所未有的机会,可以了解城市交通网络中的车辆运动模式,包括以用户为中心的旅行经验和系统范围的时空模式。城市车辆轨迹数据的时空特征在结构上相互关联,因此,许多先前的研究人员使用了各种方法来理解这种结构。特别是,由于其强大的函数近似和特征表示能力,深度学习模型是由于许多研究人员的注意。因此,本文的目的是开发基于深度学习的城市车辆轨迹分析模型,以更好地了解城市交通网络的移动模式。特别是,本文重点介绍了两项研究主题,具有很高的必要性,重要性和适用性:下一个位置预测,以及合成轨迹生成。在这项研究中,我们向城市车辆轨迹分析提供了各种新型模型,使用深度学习。
translated by 谷歌翻译
Proper functioning of connected and automated vehicles (CAVs) is crucial for the safety and efficiency of future intelligent transport systems. Meanwhile, transitioning to fully autonomous driving requires a long period of mixed autonomy traffic, including both CAVs and human-driven vehicles. Thus, collaboration decision-making for CAVs is essential to generate appropriate driving behaviors to enhance the safety and efficiency of mixed autonomy traffic. In recent years, deep reinforcement learning (DRL) has been widely used in solving decision-making problems. However, the existing DRL-based methods have been mainly focused on solving the decision-making of a single CAV. Using the existing DRL-based methods in mixed autonomy traffic cannot accurately represent the mutual effects of vehicles and model dynamic traffic environments. To address these shortcomings, this article proposes a graph reinforcement learning (GRL) approach for multi-agent decision-making of CAVs in mixed autonomy traffic. First, a generic and modular GRL framework is designed. Then, a systematic review of DRL and GRL methods is presented, focusing on the problems addressed in recent research. Moreover, a comparative study on different GRL methods is further proposed based on the designed framework to verify the effectiveness of GRL methods. Results show that the GRL methods can well optimize the performance of multi-agent decision-making for CAVs in mixed autonomy traffic compared to the DRL methods. Finally, challenges and future research directions are summarized. This study can provide a valuable research reference for solving the multi-agent decision-making problems of CAVs in mixed autonomy traffic and can promote the implementation of GRL-based methods into intelligent transportation systems. The source code of our work can be found at https://github.com/Jacklinkk/Graph_CAVs.
translated by 谷歌翻译
本文为可以提取车辆间交互的自治车辆提供特定于自主车辆的驾驶员风险识别框架。在驾驶员认知方式下对城市驾驶场景进行了这种提取,以提高风险场景的识别准确性。首先,将群集分析应用于驱动程序的操作数据,以学习不同驱动程序风险场景的主观评估,并为每个场景生成相应的风险标签。其次,采用图形表示模型(GRM)统一和构建动态车辆,车间交互和静态交通标记的实际驾驶场景中的特征。驾驶员特定的风险标签提供了实践,以捕获不同司机的风险评估标准。此外,图形模型表示驾驶场景的多个功能。因此,所提出的框架可以了解不同驱动程序的驾驶场景的风险评估模式,并建立特定于驱动程序的风险标识符。最后,通过使用由多个驱动程序收集的现实世界城市驾驶数据集进行的实验评估所提出的框架的性能。结果表明,建议的框架可以准确地识别实际驾驶环境中的风险及其水平。
translated by 谷歌翻译
恶意软件(恶意软件)分类为持续学习(CL)制度提供了独特的挑战,这是由于每天收到的新样本的数量以及恶意软件的发展以利用新漏洞。在典型的一天中,防病毒供应商将获得数十万个独特的软件,包括恶意和良性,并且在恶意软件分类器的一生中,有超过十亿个样品很容易积累。鉴于问题的规模,使用持续学习技术的顺序培训可以在减少培训和存储开销方面提供可观的好处。但是,迄今为止,还没有对CL应用于恶意软件分类任务的探索。在本文中,我们研究了11种应用于三个恶意软件任务的CL技术,涵盖了常见的增量学习方案,包括任务,类和域增量学习(IL)。具体而言,使用两个现实的大规模恶意软件数据集,我们评估了CL方法在二进制恶意软件分类(domain-il)和多类恶意软件家庭分类(Task-IL和类IL)任务上的性能。令我们惊讶的是,在几乎所有情况下,持续的学习方法显着不足以使训练数据的幼稚关节重播 - 在某些情况下,将精度降低了70个百分点以上。与关节重播相比,有选择性重播20%的存储数据的一种简单方法可以实现更好的性能,占训练时间的50%。最后,我们讨论了CL技术表现出乎意料差的潜在原因,希望它激发进一步研究在恶意软件分类域中更有效的技术。
translated by 谷歌翻译
在现实世界中,时间序列的课程通常在最后一次标记,但是许多应用程序需要在每个时间点进行分类时间序列。例如关键患者的结果仅在最后确定,但应始终诊断出他以及时治疗。因此,我们提出了一个新概念:时间序列的连续分类(CCT)。它要求模型在不同的时间阶段学习数据。但是时间序列动态发展,导致不同的数据分布。当模型学习多分布时,它总是会忘记或过度贴身。我们建议,有意义的学习计划是由于一个有趣的观察而潜在的:通过信心来衡量,模型学习多个分布的过程类似于人类学习的过程多重知识。因此,我们提出了一种新型的CCT(C3T)的置信度引导方法。它可以模仿邓宁·克鲁格效应所描述的交替人类信心。我们定义了安排数据的客观信心,以及控制学习持续时间的自信。四个现实世界数据集的实验表明,C3T比CCT的所有基准更准确。
translated by 谷歌翻译
应用强化学习来自动驾驶需要某些挑战,这主要是由于大规模的交通流动,这种挑战是动态变化的。为了应对此类挑战,有必要快速确定对周围车辆不断变化的意图的响应策略。因此,我们提出了一种新的政策优化方法,用于使用基于图的互动感知约束来安全驾驶。在此框架中,运动预测和控制模块是同时训练的,同时共享包含社会环境的潜在表示。此外,为了反映社交互动,我们以图形形式表达了代理的运动并过滤特征。这有助于保留相邻节点的时空位置。此外,我们创建反馈循环以有效地组合这两个模块。结果,这种方法鼓励博学的控制器免受动态风险的侵害,并在各种情况下使运动预测强大。在实验中,我们与城市驾驶模拟器Carla建立了一个包括各种情况的导航场景。该实验表明,与基线相比,导航策略和运动预测的两侧的最新性能。
translated by 谷歌翻译
本文提出了一个新型的深度学习框架,用于多模式运动预测。该框架由三个部分组成:经常性神经网络,以处理目标代理的运动过程,卷积神经网络处理栅格化环境表示以及一种基于距离的注意机制,以处理不同代理之间的相互作用。我们在大规模的真实驾驶数据集,Waymo Open Motion数据集上验证了所提出的框架,并将其性能与标准测试基准上的其他方法进行比较。定性结果表明,我们的模型给出的预测轨迹是准确,多样的,并且根据道路结构。标准基准测试的定量结果表明,我们的模型在预测准确性和其他评估指标方面优于其他基线方法。拟议的框架是2021 Waymo Open DataSet运动预测挑战的第二名。
translated by 谷歌翻译
仿真是对机器人系统(例如自动驾驶汽车)进行扩展验证和验证的关键。尽管高保真物理和传感器模拟取得了进步,但在模拟道路使用者的现实行为方面仍然存在一个危险的差距。这是因为,与模拟物理和图形不同,设计人类行为的第一个原理模型通常是不可行的。在这项工作中,我们采用了一种数据驱动的方法,并提出了一种可以学会从现实世界驱动日志中产生流量行为的方法。该方法通过将交通仿真问题分解为高级意图推理和低级驾驶行为模仿,通过利用驾驶行为的双层层次结构来实现高样本效率和行为多样性。该方法还结合了一个计划模块,以获得稳定的长马行为。我们从经验上验证了我们的方法,即交通模拟(位)的双层模仿,并具有来自两个大规模驾驶数据集的场景,并表明位表明,在现实主义,多样性和长途稳定性方面可以达到平衡的交通模拟性能。我们还探索了评估行为现实主义的方法,并引入了一套评估指标以进行交通模拟。最后,作为我们的核心贡献的一部分,我们开发和开源一个软件工具,该工具将跨不同驱动数据集的数据格式统一,并将现有数据集将场景转换为交互式仿真环境。有关其他信息和视频,请参见https://sites.google.com/view/nvr-bits2022/home
translated by 谷歌翻译
行为预测在集成自主驾驶软件解决方案中起着重要作用。在行为预测研究中,与单一代理行为预测相比,交互行为预测是一个较小的领域。预测互动剂的运动需要启动新的机制来捕获交互式对的关节行为。在这项工作中,我们将端到端的关节预测问题作为边际学习和车辆行为联合学习的顺序学习过程。我们提出了ProspectNet,这是一个采用加权注意分数的联合学习块,以模拟交互式剂对之间的相互影响。联合学习块首先权衡多模式预测的候选轨迹,然后通过交叉注意更新自我代理的嵌入。此外,我们将每个交互式代理的个人未来预测播放到一个智慧评分模块中,以选择顶部的$ K $预测对。我们表明,ProspectNet优于两个边际预测的笛卡尔产品,并在Waymo交互式运动预测基准上实现了可比的性能。
translated by 谷歌翻译
在公共道路上大规模的自动车辆部署有可能大大改变当今社会的运输方式。尽管这种追求是在几十年前开始的,但仍有公开挑战可靠地确保此类车辆在开放环境中安全运行。尽管功能安全性是一个完善的概念,但测量车辆行为安全的问题仍然需要研究。客观和计算分析交通冲突的一种方法是开发和利用所谓的关键指标。在与自动驾驶有关的各种应用中,当代方法利用了关键指标的潜力,例如用于评估动态风险或过滤大型数据集以构建方案目录。作为系统地选择适当的批判性指标的先决条件,我们在自动驾驶的背景下广泛回顾了批判性指标,其属性及其应用的现状。基于这篇综述,我们提出了一种适合性分析,作为一种有条不紊的工具,可以由从业者使用。然后,可以利用提出的方法和最新审查的状态来选择涵盖应用程序要求的合理的测量工具,如分析的示例性执行所证明。最终,高效,有效且可靠的衡量自动化车辆安全性能是证明其可信赖性的关键要求。
translated by 谷歌翻译
轨迹预测是自动驾驶汽车的重要任务之一。机器学习的最新进展使一系列高级轨迹预测算法。最近,许多研究人员证明了使用图形神经网络(GNN)进行轨迹预测的矢量化表示的有效性。但是,这些算法要么很少关注模型在各种情况下的推广性,要么只是假设培训和测试数据遵循类似的统计数据。实际上,当测试场景是看不见的或分布不足(OOD)时,由此产生的火车测试域转移通常会导致预测性能的显着降解,这将影响下游模块并最终导致严重的事故。因此,重要的是要彻底研究预测模型的概括性,这不仅可以帮助识别其弱点,而且还提供了有关如何改善这些模型的见解。本文提出了使用功能归因方法来帮助解释黑框模型的概括分析框架。对于案例研究,我们对利用矢量化表示的基于图形的最先进的轨迹预测指标提供了深入的概括分析。结果表明,由于域的转移而导致的性能降低,功能归因提供了见解,以识别这些问题的潜在原因。最后,我们得出结论的共同预测挑战以及训练过程引起的加权偏见如何恶化准确性。
translated by 谷歌翻译
在人群情景中,根据许多外部因素,预测行人的轨迹是一个复杂和具有挑战性的任务。场景的拓扑和行人之间的相互作用只是其中一些。由于数据 - 科学和数据收集技术的进步,深入学习方法最近成为众多域中的研究热点。因此,越来越多的研究人员对预测行人的轨迹应用这些方法并不令人惊讶。本文将这些相对较新的深度学习算法与基于经典知识的模型进行了比较,这些算法被广泛用于模拟行人动态。它为两种方法提供了全面的文献综述,探索了技术和应用面向差异,并解决了未来的问题以及未来的发展方向。我们的调查指出,由于深度学习算法的高准确性,现在,基于知识的模型来预测局部轨迹的内容是可疑的。然而,深度学习算法用于大规模模拟的能力和集体动态的描述仍有待证明。此外,比较表明,两种方法(混合方法)的组合似乎很有希望克服像深度学习方法的缺失解释性等缺点。
translated by 谷歌翻译
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern (1) a taxonomy and extensive overview of the state-of-the-art; (2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner; (3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time and storage.
translated by 谷歌翻译