设计有效的通用上下文盗版算法,这些算法与大型甚至连续的动作空间一起使用,将有助于应用于重要场景,例如信息检索,推荐系统和连续控制。尽管获得标准的遗憾保证可能是无望的,但已经提出了另一种遗憾的观念来解决大型行动。我们为上下文土匪提出了一个平稳的遗憾概念,该概念主导了先前提出的替代方案。我们在统计和计算高效的算法上设计了一种在标准监督的甲骨文中与一般功能近似作用的统计和高效算法。我们还提出了一种自适应算法,该算法会自动适应任何平滑度。我们的算法可用于在标准遗憾的情况下恢复以前的minimax/pareto最佳保证我们提出的算法。
translated by 谷歌翻译
顺序决策中的一个核心问题是开发实用且计算上有效的算法,但支持灵活的通用模型的使用。关注上下文匪徒问题,最近的进度在可能的替代品数量(“动作”)很小时提供了可证明的有效算法,并具有很强的经验性能,但是在大型,连续的行动空间中进行决策的保证仍然难以捉摸,导致了重要的重要性理论与实践之间的差距。我们介绍了具有连续线性结构化作用空间的上下文匪徒的第一个有效的通用算法。我们的算法利用了(i)监督学习的计算序列,以及(ii)在动作空间上进行优化,并实现样本复杂性,运行时和内存,独立于动作空间的大小。此外,这是简单而实用的。我们进行大规模的经验评估,并表明我们的方法通常比标准基准相比具有较高的性能和效率。
translated by 谷歌翻译
在线学习和决策中的一个核心问题 - 从土匪到强化学习 - 是要了解哪种建模假设会导致样本有效的学习保证。我们考虑了一个普遍的对抗性决策框架,该框架涵盖了(结构化的)匪徒问题,这些问题与对抗性动力学有关。我们的主要结果是通过新的上限和下限显示决策估计系数,这是Foster等人引入的复杂度度量。在与我们环境的随机对应物中,对于对抗性决策而言是必要和足够的遗憾。但是,与随机设置相比,必须将决策估计系数应用于所考虑的模型类(或假设)的凸壳。这就确定了容纳对抗奖励或动态的价格受凸层化模型类的行为的约束,并恢复了许多现有结果 - 既积极又负面。在获得这些保证的途径中,我们提供了新的结构结果,将决策估计系数与其他众所周知的复杂性度量的变体联系起来,包括Russo和Van Roy的信息比以及Lattimore和Gy的探索目标\“ {o} rgy。
translated by 谷歌翻译
We study bandit model selection in stochastic environments. Our approach relies on a meta-algorithm that selects between candidate base algorithms. We develop a meta-algorithm-base algorithm abstraction that can work with general classes of base algorithms and different type of adversarial meta-algorithms. Our methods rely on a novel and generic smoothing transformation for bandit algorithms that permits us to obtain optimal $O(\sqrt{T})$ model selection guarantees for stochastic contextual bandit problems as long as the optimal base algorithm satisfies a high probability regret guarantee. We show through a lower bound that even when one of the base algorithms has $O(\log T)$ regret, in general it is impossible to get better than $\Omega(\sqrt{T})$ regret in model selection, even asymptotically. Using our techniques, we address model selection in a variety of problems such as misspecified linear contextual bandits, linear bandit with unknown dimension and reinforcement learning with unknown feature maps. Our algorithm requires the knowledge of the optimal base regret to adjust the meta-algorithm learning rate. We show that without such prior knowledge any meta-algorithm can suffer a regret larger than the optimal base regret.
translated by 谷歌翻译
我们研究$ k $ used的上下文决斗强盗问题,一个顺序决策制定设置,其中学习者使用上下文信息来制作两个决定,但只观察到\ emph {基于优先级的反馈}建议一个决定比另一个决定更好。我们专注于可实现的遗憾最小化问题,其中反馈由一个由给定函数类$ \ mathcal f $规定的成对偏好矩阵生成。我们提供了一种新的算法,实现了最佳反应遗憾的新概念的最佳遗憾,这是一个严格更强烈的性能测量,而不是先前作品所考虑的绩效衡量标准。该算法还在计算上有效,在多项式时间中运行,假设访问在线丢失回归超过$ \ mathcal f $。这可以解决dud \'ik等人的开放问题。[2015]关于Oracle高效,后悔 - 用于上下文决斗匪徒的最佳算法。
translated by 谷歌翻译
上下文匪徒问题是一个理论上合理的框架,在各个领域都有广泛的应用程序。虽然先前关于此问题的研究通常需要噪声和上下文之间的独立性,但我们的工作考虑了一个更明智的环境,其中噪声成为影响背景和奖励的潜在混杂因素。这样的混杂设置更现实,可以扩展到更广泛的应用程序。但是,未解决的混杂因素将导致奖励功能估计的偏见,从而导致极大的遗憾。为了应对混杂因素带来的挑战,我们应用了双工具变量回归,该回归可以正确识别真正的奖励功能。我们证明,在两种广泛使用的繁殖核希尔伯特空间中,该方法的收敛速率几乎是最佳的。因此,我们可以根据混杂的匪徒问题的理论保证来设计计算高效和遗憾的算法。数值结果说明了我们提出的算法在混杂的匪徒设置中的功效。
translated by 谷歌翻译
我们考虑了上下文匪徒的问题,其中Action是一个地面集的子集,均值奖励由属于$ \ Mathcal {F} $的未知单调子模块函数建模。我们允许将时变的Matroid约束放置在可行的集合上。假设使用后悔$ \ mathsf {reg}(\ mathcal {f})$访问Oracle,我们的算法根据逆间隙加权策略有效地随机随机化估计函数的局部最佳函数。我们展示了这种过程的累积遗憾了时间,以时间为单位$ N $尺度作为$ o(\ sqrt {n \ mathsf {reg}(\ mathcal {f})),乘以乘法因子$ 1/2 $的基准。另一方面,使用(filmus和ward 2014)的技术,我们展示了与当地随机化的$ \ epsilon $ -greedy程序率为$ o(n ^ {2/3} \ mathsf {reg}(\mathcal {f})^ {1/3})$较强大的$(1-e ^ { - 1})$基准。
translated by 谷歌翻译
我们考虑随机多武装强盗(MAB)问题,延迟影响了行动。在我们的环境中,过去采取的行动在随后的未来影响了ARM奖励。在现实世界中,行动的这种延迟影响是普遍的。例如,为某个社会群体中的人员偿还贷款的能力可能历史上历史上批准贷款申请的频率频率。如果银行将贷款申请拒绝拒绝弱势群体,则可以创建反馈循环,进一步损害该群体中获取贷款的机会。在本文中,我们制定了在多武装匪徒的背景下的行动延迟和长期影响。由于在学习期间,我们将强盗设置概括为对这种“偏置”的依赖性进行编码。目标是随着时间的推移最大化收集的公用事业,同时考虑到历史行动延迟影响所产生的动态。我们提出了一种算法,实现了$ \ tilde {\ mathcal {o}}的遗憾,并显示$ \ omega(kt ^ {2/3})$的匹配遗憾下限,其中$ k $是武器数量,$ t $是学习地平线。我们的结果通过添加技术来补充强盗文献,以处理具有长期影响的行动,并对设计公平算法有影响。
translated by 谷歌翻译
我们在嵌套政策类别的存在下研究匪徒场景中的模型选择问题,目的是获得同时的对抗和随机性(“两全其美”)高概率的遗憾保证。我们的方法要求每个基础学习者都有一个候选人的遗憾约束,可能会或可能不会举行,而我们的元算法按照一定时间表来扮演每个基础学习者,该时间表使基础学习者的候选人后悔的界限保持平衡,直到被发现违反他们的保证为止。我们开发了专门设计的仔细的错误指定测试,以将上述模型选择标准与利用环境的(潜在良性)性质的能力相结合。我们在对抗环境中恢复畜栏算法的模型选择保证,但是在实现高概率后悔界限的附加益处,特别是在嵌套对抗性线性斑块的情况下。更重要的是,我们的模型选择结果也同时在差距假设​​下的随机环境中同时保持。这些是在(线性)匪徒场景中执行模型选择时,可以达到世界上最好的(随机和对抗性)保证的第一个理论结果。
translated by 谷歌翻译
我们研究了批量策略优化中模型选择的问题:给定固定的部分反馈数据集和$ M $ Model类,学习具有与最佳模型类的策略具有竞争力的性能的策略。通过识别任何模型选择算法应最佳地折衷的错误,以线性模型类在与线性模型类中的内容匪徒设置中的问题正式化。(1)近似误差,(2)统计复杂性,(3 )覆盖范围。前两个来源是在监督学习的模型选择中常见的,在最佳的交易中,这些属性得到了很好的研究。相比之下,第三个源是批量策略优化的唯一,并且是由于设置所固有的数据集移位。首先表明,没有批处理策略优化算法可以同时实现所有三个的保证,展示批量策略优化的困难之间的显着对比,以及监督学习中的积极结果。尽管存在这种负面结果,但我们表明,在三个错误源中的任何一个都可以实现实现剩下的两个近乎oracle不平等的算法。我们通过实验结论,证明了这些算法的功效。
translated by 谷歌翻译
强化学习理论集中在两个基本问题上:实现低遗憾,并确定$ \ epsilon $ - 最佳政策。虽然简单的减少允许人们应用低温算法来获得$ \ epsilon $ - 最佳政策并达到最坏的最佳速率,但尚不清楚低regret算法是否可以获得实例 - 最佳率的策略识别率。我们表明这是不可能的 - 在遗憾和确定$ \ epsilon $ - 最佳政策之间以最佳的利率确定了基本的权衡。由于我们的负面发现,我们提出了针对PAC表格增强学习实例依赖性样本复杂性的新量度,该方法明确说明了基础MDP中可达到的国家访问分布。然后,我们提出和分析一种基于计划的新型算法,该算法达到了这种样本的复杂性 - 产生的复杂性会随着次要差距和状态的“可达到性”而缩放。我们显示我们的算法几乎是最小的最佳选择,并且在一些示例中,我们实例依赖性样品复杂性比最差案例界限可显着改善。
translated by 谷歌翻译
在随着时间变化的组合环境中的在线决策激励,我们研究了将离线算法转换为其在线对应物的问题。我们专注于使用贪婪算法对局部错误的贪婪算法进行恒定因子近似的离线组合问题。对于此类问题,我们提供了一个通用框架,该框架可有效地将稳健的贪婪算法转换为使用Blackwell的易近算法。我们证明,在完整信息设置下,由此产生的在线算法具有$ O(\ sqrt {t})$(近似)遗憾。我们进一步介绍了Blackwell易接近性的强盗扩展,我们称之为Bandit Blackwell的可接近性。我们利用这一概念将贪婪的稳健离线算法转变为匪(t^{2/3})$(近似)$(近似)的遗憾。展示了我们框架的灵活性,我们将脱机之间的转换应用于收入管理,市场设计和在线优化的几个问题,包括在线平台中的产品排名优化,拍卖中的储备价格优化以及supperular tossodular最大化。 。我们还将还原扩展到连续优化的类似贪婪的一阶方法,例如用于最大化连续强的DR单调下调功能,这些功能受到凸约束的约束。我们表明,当应用于这些应用程序时,我们的转型会导致新的后悔界限或改善当前已知界限。我们通过为我们的两个应用进行数值模拟来补充我们的理论研究,在这两种应用中,我们都观察到,转换的数值性能在实际情况下优于理论保证。
translated by 谷歌翻译
我们研究了一个顺序决策问题,其中学习者面临$ k $武装的随机匪徒任务的顺序。对手可能会设计任务,但是对手受到限制,以在$ m $ and的较小(但未知)子集中选择每个任务的最佳组。任务边界可能是已知的(强盗元学习设置)或未知(非平稳的强盗设置)。我们设计了一种基于Burnit subsodular最大化的减少的算法,并表明,在大量任务和少数最佳武器的制度中,它在两种情况下的遗憾都比$ \ tilde {o}的简单基线要小。 \ sqrt {knt})$可以通过使用为非平稳匪徒问题设计的标准算法获得。对于固定任务长度$ \ tau $的强盗元学习问题,我们证明该算法的遗憾被限制为$ \ tilde {o}(nm \ sqrt {m \ tau}+n^{2/3} m \ tau)$。在每个任务中最佳武器的可识别性的其他假设下,我们显示了一个带有改进的$ \ tilde {o}(n \ sqrt {m \ tau}+n^{1/2} {1/2} \ sqrt的强盗元学习算法{m k \ tau})$遗憾。
translated by 谷歌翻译
我们介绍了一个多臂强盗模型,其中奖励是多个随机变量的总和,每个动作只会改变其中的分布。每次动作之后,代理都会观察所有变量的实现。该模型是由营销活动和推荐系统激励的,在该系统中,变量代表单个客户的结果,例如点击。我们提出了UCB风格的算法,以估计基线上的动作的提升。我们研究了问题的多种变体,包括何时未知基线和受影响的变量,并证明所有这些变量均具有sublrinear后悔界限。我们还提供了较低的界限,以证明我们的建模假设的必要性是合理的。关于合成和现实世界数据集的实验显示了估计不使用这种结构的策略的振奋方法的好处。
translated by 谷歌翻译
本文以非线性功能近似研究基于模型的匪徒和增强学​​习(RL)。我们建议研究与近似局部最大值的收敛性,因为我们表明,即使对于具有确定性奖励的一层神经网络匪徒,全球收敛在统计上也很棘手。对于非线性匪徒和RL,本文介绍了一种基于模型的算法,即具有在线模型学习者(小提琴)的虚拟攀登,该算法可证明其收敛到局部最大值,其样品复杂性仅取决于模型类的顺序Rademacher复杂性。我们的结果意味着在几种具体设置(例如有限或稀疏模型类别的线性匪徒)和两层神经净匪内的新型全球或本地遗憾界限。一个关键的算法洞察力是,即使对于两层神经净模型类别,乐观也可能导致过度探索。另一方面,为了收敛到本地最大值,如果模型还可以合理地预测真实返回的梯度和Hessian的大小,则足以最大化虚拟返回。
translated by 谷歌翻译
富达匪徒问题是$ k $的武器问题的变体,其中每个臂的奖励通过提供额外收益的富达奖励来增强,这取决于播放器如何对该臂进行“忠诚”在过去。我们提出了两种忠诚的模型。在忠诚点模型中,额外奖励的数量取决于手臂之前播放的次数。在订阅模型中,额外的奖励取决于手臂的连续绘制的当前数量。我们考虑随机和对抗问题。由于单臂策略在随机问题中并不总是最佳,因此对抗性环境中遗憾的概念需要仔细调整。我们介绍了三个可能的遗憾和调查,这可以是偏执的偏执。我们详细介绍了增加,减少和优惠券的特殊情况(玩家在手臂的每辆M $播放后获得额外的奖励)保真奖励。对于不一定享受载体遗憾的模型,我们提供了最糟糕的下限。对于那些展示Sublinear遗憾的模型,我们提供算法并绑定他们的遗憾。
translated by 谷歌翻译
我们考虑带有背包的土匪(从此以后,BWK),这是一种在供应/预算限制下的多臂土匪的通用模型。特别是,强盗算法需要解决一个众所周知的背包问题:找到最佳的物品包装到有限尺寸的背包中。 BWK问题是众多激励示例的普遍概括,范围从动态定价到重复拍卖,再到动态AD分配,再到网络路由和调度。尽管BWK的先前工作集中在随机版本上,但我们开创了可以在对手身上选择结果的另一个极端。与随机版本和“经典”对抗土匪相比,这是一个更加困难的问题,因为遗憾的最小化不再可行。相反,目的是最大程度地减少竞争比率:基准奖励与算法奖励的比率。我们设计了一种具有竞争比O(log t)的算法,相对于动作的最佳固定分布,其中T是时间范围;我们还证明了一个匹配的下限。关键的概念贡献是对问题的随机版本的新观点。我们为随机版本提出了一种新的算法,该算法是基于重复游戏中遗憾最小化的框架,并且与先前的工作相比,它具有更简单的分析。然后,我们为对抗版本分析此算法,并将其用作求解后者的子例程。
translated by 谷歌翻译
在古典语境匪徒问题中,在每轮$ t $,学习者观察一些上下文$ c $,选择一些动作$ i $执行,并收到一些奖励$ r_ {i,t}(c)$。我们考虑此问题的变体除了接收奖励$ r_ {i,t}(c)$之外,学习者还要学习其他一些上下文$的$ r_ {i,t}(c')$的值C'$ in设置$ \ mathcal {o} _i(c)$;即,通过在不同的上下文下执行该行动来实现的奖励\ mathcal {o} _i(c)$。这种变体出现在若干战略设置中,例如学习如何在非真实的重复拍卖中出价,最热衷于随着许多平台转换为运行的第一价格拍卖。我们将此问题称为交叉学习的上下文匪徒问题。古典上下围匪徒问题的最佳算法达到$ \ tilde {o}(\ sqrt {ckt})$遗憾针对所有固定策略,其中$ c $是上下文的数量,$ k $的行动数量和$ $次数。我们设计并分析了交叉学习的上下文匪徒问题的新算法,并表明他们的遗憾更好地依赖上下文的数量。在选择动作时学习所有上下文的奖励的完整交叉学习下,即设置$ \ mathcal {o} _i(c)$包含所有上下文,我们显示我们的算法实现后悔$ \ tilde {o}( \ sqrt {kt})$,删除$ c $的依赖。对于任何其他情况,即在部分交叉学习下,$ | \ mathcal {o} _i(c)| <c $ for $(i,c)$,遗憾界限取决于如何设置$ \ mathcal o_i(c)$影响上下文之间的交叉学习的程度。我们从Ad Exchange运行一流拍卖的广告交换中模拟了我们的真实拍卖数据的算法,并表明了它们优于传统的上下文强盗算法。
translated by 谷歌翻译
我们通过审查反馈重复进行一定的第一价格拍卖来研究在线学习,在每次拍卖结束时,出价者只观察获胜的出价,学会了适应性地出价,以最大程度地提高她的累积回报。为了实现这一目标,投标人面临着一个具有挑战性的困境:如果她赢得了竞标 - 获得正收益的唯一方法 - 然后她无法观察其他竞标者的最高竞标,我们认为我们认为这是从中汲取的。一个未知的分布。尽管这一困境让人联想到上下文强盗中的探索探索折衷权,但现有的UCB或汤普森采样算法无法直接解决。在本文中,通过利用第一价格拍卖的结构属性,我们开发了第一个实现$ o(\ sqrt {t} \ log^{2.5} t)$ hearry bund的第一个学习算法(\ sqrt {t} \ log^{2.5} t),这是最小值的最低$ $ \ log $因素,当投标人的私人价值随机生成时。我们这样做是通过在一系列问题上提供算法,称为部分有序的上下文匪徒,该算法将图形反馈跨动作,跨环境跨上下文进行结合,以及在上下文中的部分顺序。我们通过表现出一个奇怪的分离来确定该框架的优势和劣势,即在随机环境下几乎可以独立于动作/背景规模的遗憾,但是在对抗性环境下是不可能的。尽管这一通用框架有限制,但我们进一步利用了第一价格拍卖的结构,并开发了一种学习算法,该算法在存在对手生成的私有价值的情况下,在存在的情况下可以有效地运行样本(并有效地计算)。我们建立了一个$ o(\ sqrt {t} \ log^3 t)$遗憾,以此为此算法,因此提供了对第一价格拍卖的最佳学习保证的完整表征。
translated by 谷歌翻译
我们研究了在偏见的可观察性模型下,在对抗性匪徒问题中的在线学习问题,称为政策反馈。在这个顺序决策问题中,学习者无法直接观察其奖励,而是看到由另一个未知策略并行运行的奖励(行为策略)。学习者必须在这种情况下面临另一个挑战:由于他们的控制之外的观察结果有限,学习者可能无法同样估算每个政策的价值。为了解决这个问题,我们提出了一系列算法,以保证任何比较者政策与行为政策之间的自然不匹配概念的范围,从而提高了对观察结果良好覆盖的比较者的绩效。我们还为对抗性线性上下文匪徒的设置提供了扩展,并通过一组实验验证理论保证。我们的关键算法想法是调整最近在非政策强化学习背景下流行的悲观奖励估计量的概念。
translated by 谷歌翻译