卷积神经网络(CNNS)已被广泛应用。但随着CNN的成长,算术运算和内存占用的数量也增加。此外,典型的非线性激活函数不允许连续层编码的操作的相关性,通过组合它们来防止简化中间步骤。我们提出了一种新的激活函数,允许CNN的顺序层之间的关联性。即使我们的激活函数是非线性的,它也可以通过欧几里德几何形状的共形模型中的一系列线性操作来表示。在此域中,操作,但不限于卷积,平均池和丢失保持线性。我们利用关联性来组合所有的“保形层”并使推理的成本持续,而不管网络的深度如何。
translated by 谷歌翻译
Computational units in artificial neural networks follow a simplified model of biological neurons. In the biological model, the output signal of a neuron runs down the axon, splits following the many branches at its end, and passes identically to all the downward neurons of the network. Each of the downward neurons will use their copy of this signal as one of many inputs dendrites, integrate them all and fire an output, if above some threshold. In the artificial neural network, this translates to the fact that the nonlinear filtering of the signal is performed in the upward neuron, meaning that in practice the same activation is shared between all the downward neurons that use that signal as their input. Dendrites thus play a passive role. We propose a slightly more complex model for the biological neuron, where dendrites play an active role: the activation in the output of the upward neuron becomes optional, and instead the signals going through each dendrite undergo independent nonlinear filterings, before the linear combination. We implement this new model into a ReLU computational unit and discuss its biological plausibility. We compare this new computational unit with the standard one and describe it from a geometrical point of view. We provide a Keras implementation of this unit into fully connected and convolutional layers and estimate their FLOPs and weights change. We then use these layers in ResNet architectures on CIFAR-10, CIFAR-100, Imagenette, and Imagewoof, obtaining performance improvements over standard ResNets up to 1.73%. Finally, we prove a universal representation theorem for continuous functions on compact sets and show that this new unit has more representational power than its standard counterpart.
translated by 谷歌翻译
神经网络的外包计算允许用户访问艺术模型的状态,而无需投资专门的硬件和专业知识。问题是用户对潜在的隐私敏感数据失去控制。通过同性恋加密(HE)可以在加密数据上执行计算,而不会显示其内容。在这种知识的系统化中,我们深入了解与隐私保留的神经网络相结合的方法。我们将更改分类为神经网络模型和架构,使其在他和这些变化的影响方面提供影响。我们发现众多挑战是基于隐私保留的深度学习,例如通过加密方案构成的计算开销,可用性和限制。
translated by 谷歌翻译
While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation, and the vision of the Internet of Things fuel the interest in resource-efficient approaches. These approaches aim for a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. The development of such approaches is among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology from a scientific environment with virtually unlimited computing resources into everyday's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. In particular, we focus on deep neural networks (DNNs), the predominant machine learning models of the past decade. We give a comprehensive overview of the vast literature that can be mainly split into three non-mutually exclusive categories: (i) quantized neural networks, (ii) network pruning, and (iii) structural efficiency. These techniques can be applied during training or as post-processing, and they are widely used to reduce the computational demands in terms of memory footprint, inference speed, and energy efficiency. We also briefly discuss different concepts of embedded hardware for DNNs and their compatibility with machine learning techniques as well as potential for energy and latency reduction. We substantiate our discussion with experiments on well-known benchmark datasets using compression techniques (quantization, pruning) for a set of resource-constrained embedded systems, such as CPUs, GPUs and FPGAs. The obtained results highlight the difficulty of finding good trade-offs between resource efficiency and predictive performance.
translated by 谷歌翻译
深度学习使用由其重量进行参数化的神经网络。通常通过调谐重量来直接最小化给定损耗功能来训练神经网络。在本文中,我们建议将权重重新参数转化为网络中各个节点的触发强度的目标。给定一组目标,可以计算使得发射强度最佳地满足这些目标的权重。有人认为,通过我们称之为级联解压缩的过程,使用培训的目标解决爆炸梯度的问题,并使损失功能表面更加光滑,因此导致更容易,培训更快,以及潜在的概括,神经网络。它还允许更容易地学习更深层次和经常性的网络结构。目标对重量的必要转换有额外的计算费用,这是在许多情况下可管理的。在目标空间中学习可以与现有的神经网络优化器相结合,以额外收益。实验结果表明了使用目标空间的速度,以及改进的泛化的示例,用于全连接的网络和卷积网络,以及调用和处理长时间序列的能力,并使用经常性网络进行自然语言处理。
translated by 谷歌翻译
胶囊网络(CAPSNET)是图像处理的新兴趋势。与卷积神经网络相反,CAPSNET不容易受到对象变形的影响,因为对象的相对空间信息在整个网络中保存。但是,它们的复杂性主要与胶囊结构和动态路由机制有关,这使得以其原始形式部署封闭式以由小型微控制器(MCU)供电的设备几乎是不合理的。在一个智力从云到边缘迅速转移的时代,这种高复杂性对在边缘的采用capsnets的采用构成了严重的挑战。为了解决此问题,我们提出了一个API,用于执行ARM Cortex-M和RISC-V MCUS中的量化capsnet。我们的软件内核扩展了ARM CMSIS-NN和RISC-V PULP-NN,以用8位整数作为操作数支持胶囊操作。随之而来的是,我们提出了一个框架,以执行CAPSNET的训练后量化。结果显示,记忆足迹的减少近75%,准确性损失范围从0.07%到0.18%。在吞吐量方面,我们的ARM Cortex-M API可以分别在仅119.94和90.60毫秒(MS)的中型胶囊和胶囊层执行(STM32H7555ZIT6U,Cortex-M7 @ 480 MHz)。对于GAP-8 SOC(RISC-V RV32IMCXPULP @ 170 MHz),延迟分别降至7.02和38.03 ms。
translated by 谷歌翻译
Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems.This article aims to provide a comprehensive tutorial and survey about the recent advances towards the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic co-designs, being proposed in academia and industry.The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the trade-offs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.
translated by 谷歌翻译
在本文中,我们提出了一种方法,以最大程度地减少训练有素的卷积神经网络(Convnet)的计算复杂性。这个想法是要近似给定的Convnet的所有元素,并替换原始的卷积过滤器和参数(汇总和偏置系数;以及激活函数),并有效地近似计算复杂性。低复杂性卷积过滤器是通过基于Frobenius Norm的二进制(零)线性编程方案获得的,该方案在一组二元理性的集合上获得。最终的矩阵允许无乘法计算,仅需要添加和位移动操作。这样的低复杂性结构为低功率,高效的硬件设计铺平了道路。我们将方法应用于三种不同复杂性的用例中:(i)“轻”但有效的转换供面部检测(约有1000个参数); (ii)另一个用于手写数字分类的(超过180000个参数); (iii)一个明显更大的Convnet:Alexnet,$ \ $ \ $ 120万美元。我们评估了不同近似级别的各个任务的总体绩效。在所有考虑的应用中,都得出了非常低的复杂性近似值,以保持几乎相等的分类性能。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
在本文中,我们提出了解决稳定性和卷积神经网络(CNN)的稳定性和视野的问题的神经网络。作为提高网络深度或宽度以提高性能的替代方案,我们提出了与全球加权拉普拉斯,分数拉普拉斯和逆分数拉普拉斯算子有关的基于积分的空间非识别算子,其在物理科学中的几个问题中出现。这种网络的前向传播由部分积分微分方程(PIDE)启发。我们在自动驾驶中测试基准图像分类数据集和语义分段任务的提出神经架构的有效性。此外,我们调查了这些密集的运营商的额外计算成本以及提出神经网络的前向传播的稳定性。
translated by 谷歌翻译
深度神经网络(DNNS)的边缘训练是持续学习的理想目标。但是,这受到训练所需的巨大计算能力的阻碍。硬件近似乘数表明,它们在获得DNN推理加速器中获得资源效率的有效性;但是,使用近似乘数的培训在很大程度上尚未开发。为了通过支持DNN培训的近似乘数来构建有效的资源加速器,需要对不同DNN体系结构和不同近似乘数进行彻底评估。本文介绍了近似值,这是一个开源框架,允许使用模拟近似乘数快速评估DNN训练和推理。近似值与TensorFlow(TF)一样用户友好,仅需要对DNN体系结构的高级描述以及近似乘数的C/C ++功能模型。我们通过使用GPU(AMSIM)上的基于基于LUT的近似浮点(FP)乘数模拟器来提高乘数在乘数级别的模拟速度。近似值利用CUDA并有效地将AMSIM集成到张量库中,以克服商业GPU中的本机硬件近似乘数的缺乏。我们使用近似值来评估使用LENET和RESNETS体系结构的小型和大型数据集(包括Imagenet)的近似乘数的DNN训练的收敛性和准确性。与FP32和BFLOAT16乘数相比,评估表明测试准确性相似的收敛行为和可忽略不计的变化。与训练和推理中基于CPU的近似乘数模拟相比,GPU加速近似值快2500倍以上。基于具有本地硬件乘数的高度优化的闭合源Cudnn/Cublas库,原始张量量仅比近似值快8倍。
translated by 谷歌翻译
在过去十年中,已经开发出新的深度学习(DL)算法,工作负载和硬件来解决各种问题。尽管工作量和硬件生态系统的进步,DL系统的编程方法是停滞不前的。 DL工作负载从DL库中的高度优化,特定于平台和不灵活的内核,或者在新颖的操作员的情况下,通过具有强大性能的DL框架基元建立参考实现。这项工作介绍了Tensor加工基元(TPP),一个编程抽象,用于高效的DL工作负载的高效,便携式实现。 TPPS定义了一组紧凑而多才多艺的2D张镜操作员(或虚拟张量ISA),随后可以用作构建块,以在高维张量上构建复杂的运算符。 TPP规范是平台 - 不可行的,因此通过TPPS表示的代码是便携式的,而TPP实现是高度优化的,并且特定于平台。我们展示了我们使用独立内核和端到端DL&HPC工作负载完全通过TPPS表达的方法的效力和生存性,这在多个平台上优于最先进的实现。
translated by 谷歌翻译
We propose two efficient approximations to standard convolutional neural networks: Binary-Weight-Networks and XNOR-Networks. In Binary-Weight-Networks, the filters are approximated with binary values resulting in 32× memory saving. In XNOR-Networks, both the filters and the input to convolutional layers are binary. XNOR-Networks approximate convolutions using primarily binary operations. This results in 58× faster convolutional operations (in terms of number of the high precision operations) and 32× memory savings. XNOR-Nets offer the possibility of running state-of-the-art networks on CPUs (rather than GPUs) in real-time. Our binary networks are simple, accurate, efficient, and work on challenging visual tasks. We evaluate our approach on the ImageNet classification task. The classification accuracy with a Binary-Weight-Network version of AlexNet is the same as the full-precision AlexNet. We compare our method with recent network binarization methods, BinaryConnect and BinaryNets, and outperform these methods by large margins on ImageNet, more than 16% in top-1 accuracy. Our code is available at: http://allenai.org/plato/xnornet.
translated by 谷歌翻译
The principle of equivariance to symmetry transformations enables a theoretically grounded approach to neural network architecture design. Equivariant networks have shown excellent performance and data efficiency on vision and medical imaging problems that exhibit symmetries. Here we show how this principle can be extended beyond global symmetries to local gauge transformations. This enables the development of a very general class of convolutional neural networks on manifolds that depend only on the intrinsic geometry, and which includes many popular methods from equivariant and geometric deep learning.We implement gauge equivariant CNNs for signals defined on the surface of the icosahedron, which provides a reasonable approximation of the sphere. By choosing to work with this very regular manifold, we are able to implement the gauge equivariant convolution using a single conv2d call, making it a highly scalable and practical alternative to Spherical CNNs. Using this method, we demonstrate substantial improvements over previous methods on the task of segmenting omnidirectional images and global climate patterns.
translated by 谷歌翻译
In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe efficient ways of applying these mobile models to object detection in a novel framework we call SSDLite. Additionally, we demonstrate how to build mobile semantic segmentation models through a reduced form of DeepLabv3 which we call Mobile DeepLabv3.is based on an inverted residual structure where the shortcut connections are between the thin bottleneck layers. The intermediate expansion layer uses lightweight depthwise convolutions to filter features as a source of non-linearity. Additionally, we find that it is important to remove non-linearities in the narrow layers in order to maintain representational power. We demonstrate that this improves performance and provide an intuition that led to this design.Finally, our approach allows decoupling of the input/output domains from the expressiveness of the transformation, which provides a convenient framework for further analysis. We measure our performance on ImageNet [1] classification, COCO object detection [2], VOC image segmentation [3]. We evaluate the trade-offs between accuracy, and number of operations measured by multiply-adds (MAdd), as well as actual latency, and the number of parameters.
translated by 谷歌翻译
本文提出了一种新的和富有激光激活方法,被称为FPLUS,其利用具有形式的极性标志的数学功率函数。它是通过常见的逆转操作来启发,同时赋予仿生学的直观含义。制剂在某些先前知识和预期特性的条件下理论上得出,然后通过使用典型的基准数据集通过一系列实验验证其可行性,其结果表明我们的方法在许多激活功能中拥有卓越的竞争力,以及兼容稳定性许多CNN架构。此外,我们将呈现给更广泛类型的功能延伸到称为PFPlus的函数,具有两个可以固定的或学习的参数,以便增加其表现力的容量,并且相同的测试结果验证了这种改进。
translated by 谷歌翻译
保留保护解决方案使公司能够在履行政府法规的同时将机密数据卸载到第三方服务。为了实现这一点,它们利用了各种密码技术,例如同性恋加密(HE),其允许对加密数据执行计算。大多数他计划以SIMD方式工作,数据包装方法可以显着影响运行时间和内存成本。找到导致最佳性能实现的包装方法是一个艰难的任务。我们提出了一种简单而直观的框架,摘要为用户提供包装决定。我们解释其底层数据结构和优化器,并提出了一种用于执行2D卷积操作的新算法。我们使用此框架来实现他友好的AlexNet版本,在三分钟内运行,比其他最先进的解决方案更快的数量级,只能使用他。
translated by 谷歌翻译
当今的大多数计算机视觉管道都是围绕深神经网络构建的,卷积操作需要大部分一般的计算工作。与标准算法相比,Winograd卷积算法以更少的MAC计算卷积,当使用具有2x2尺寸瓷砖$ F_2 $的版本时,3x3卷积的操作计数为2.25倍。即使收益很大,Winograd算法具有较大的瓷砖尺寸,即$ f_4 $,在提高吞吐量和能源效率方面具有更大的潜力,因为它将所需的MAC降低了4倍。不幸的是,具有较大瓷砖尺寸的Winograd算法引入了数值问题,这些问题阻止了其在整数域特异性加速器上的使用和更高的计算开销,以在空间和Winograd域之间转换输入和输出数据。为了解锁Winograd $ F_4 $的全部潜力,我们提出了一种新颖的Tap-Wise量化方法,该方法克服了使用较大瓷砖的数值问题,从而实现了仅整数的推断。此外,我们介绍了以功率和区域效率的方式处理Winograd转换的自定义硬件单元,并展示了如何将此类自定义模块集成到工业级,可编程的DSA中。对大量最先进的计算机视觉基准进行了广泛的实验评估表明,Tap-Wise量化算法使量化的Winograd $ F_4 $网络几乎与FP32基线一样准确。 Winograd增强的DSA可实现高达1.85倍的能源效率,最高可用于最先进的细分和检测网络的端到端速度高达1.83倍。
translated by 谷歌翻译
神经网络体系结构的定义是执行最关键和最具挑战性的任务之一。在本文中,我们提出了平行密码。ParallelMLPS是一种可以通过探索现代CPU和GPU的局部性和并行功能的原理来实现具有不同数量神经元和激活功能的几个独立多层感知神经网络的训练。该技术的核心思想是使用修改的矩阵乘法,该矩阵乘法将序数矩阵乘法替换为两个简单的矩阵操作,这些矩阵操作允许梯度流动的单独且独立的路径,可以在其他情况下使用。我们已经在模拟数据集中评估了我们的算法,该数据集使用10,000种不同的模型来改变样品,功能和批次的数量。如果与顺序方法相比,我们实现了从1到4个数量级的训练速度。
translated by 谷歌翻译
最新的2D图像压缩方案依赖于卷积神经网络(CNN)的力量。尽管CNN为2D图像压缩提供了有希望的观点,但将此类模型扩展到全向图像并不简单。首先,全向图像具有特定的空间和统计特性,这些特性无法通过当前CNN模型完全捕获。其次,在球体上,基本的数学操作组成了CNN体系结构,例如翻译和采样。在本文中,我们研究了全向图像的表示模型的学习,并建议使用球体的HealPix均匀采样的属性来重新定义用于全向图像的深度学习模型中使用的数学工具。特别是,我们:i)提出了在球体上进行新的卷积操作的定义,以保持经典2D卷积的高表现力和低复杂性; ii)适应标准的CNN技术,例如步幅,迭代聚集和像素改组到球形结构域;然后iii)将我们的新框架应用于全向图像压缩的任务。我们的实验表明,与应用于等应角图像的类似学习模型相比,我们提出的球形溶液可带来更好的压缩增益,可以节省比特率的13.7%。同样,与基于图形卷积网络的学习模型相比,我们的解决方案支持更具表现力的过滤器,这些过滤器可以保留高频并提供压缩图像的更好的感知质量。这样的结果证明了拟议框架的效率,该框架为其他全向视觉任务任务打开了新的研究场所,以在球体歧管上有效实施。
translated by 谷歌翻译