在许多应用程序中,在线部署之前需要离线评估新政策,因此非政策评估至关重要。大多数现有方法都集中在预期的回报上,通过平均定义目标参数,并仅提供点估计器。在本文中,我们开发了一种新的程序,以从任何初始状态开始为目标策略的回报产生可靠的间隔估计器。我们的提案说明了回报围绕其期望的可变性,重点关注个人效果,并提供有效的不确定性量化。我们的主要思想在于设计伪策略,该伪政策像从目标策略中取样一样生成子样本,以便现有的保形预测算法适用于预测间隔构建。我们的方法是由来自短视频平台的理论,合成数据和真实数据证明是合理的。
translated by 谷歌翻译
上下文匪徒的大多数非政策评估方法都集中在政策的预期结果上,该方法是通过最多只能提供渐近保证的方法来估算的。但是,在许多应用中,期望可能不是最佳绩效衡量标准,因为它不会捕获结果的可变性。此外,特别是在关键安全环境中,可能需要比渐近正确性更强的保证。为了解决这些局限性,我们考虑了对上下文匪徒的保形预测的新颖应用。给定在行为策略中收集的数据,我们建议\ emph {condormal非政策预测}(COPP),该数据可以在新目标策略下为结果输出可靠的预测间隔。我们提供理论有限样本的保证,而无需做出任何其他假设,而不是标准的上下文匪徒设置,并且与现有的合成和现实世界数据相比,经验证明了COPP的实用性。
translated by 谷歌翻译
Off-Policy evaluation (OPE) is concerned with evaluating a new target policy using offline data generated by a potentially different behavior policy. It is critical in a number of sequential decision making problems ranging from healthcare to technology industries. Most of the work in existing literature is focused on evaluating the mean outcome of a given policy, and ignores the variability of the outcome. However, in a variety of applications, criteria other than the mean may be more sensible. For example, when the reward distribution is skewed and asymmetric, quantile-based metrics are often preferred for their robustness. In this paper, we propose a doubly-robust inference procedure for quantile OPE in sequential decision making and study its asymptotic properties. In particular, we propose utilizing state-of-the-art deep conditional generative learning methods to handle parameter-dependent nuisance function estimation. We demonstrate the advantages of this proposed estimator through both simulations and a real-world dataset from a short-video platform. In particular, we find that our proposed estimator outperforms classical OPE estimators for the mean in settings with heavy-tailed reward distributions.
translated by 谷歌翻译
本文关注的是,基于无限视野设置中预采用的观察数据,为目标策略的价值离线构建置信区间。大多数现有作品都假定不存在混淆观察到的动作的未测量变量。但是,在医疗保健和技术行业等实际应用中,这种假设可能会违反。在本文中,我们表明,使用一些辅助变量介导动作对系统动态的影响,目标策略的价值在混杂的马尔可夫决策过程中可以识别。基于此结果,我们开发了一个有效的非政策值估计器,该估计值可用于潜在模型错误指定并提供严格的不确定性定量。我们的方法是通过理论结果,从乘车共享公司获得的模拟和真实数据集证明的。python实施了建议的过程,请访问https://github.com/mamba413/cope。
translated by 谷歌翻译
我们考虑在离线域中的强化学习(RL)方法,没有其他在线数据收集,例如移动健康应用程序。计算机科学文献中的大多数现有策略优化算法都是在易于收集或模拟的在线设置中开发的。通过预采用的离线数据集,它们对移动健康应用程序的概括尚不清楚。本文的目的是开发一个新颖的优势学习框架,以便有效地使用预采用的数据进行策略优化。所提出的方法采用由任何现有的最新RL算法计算的最佳Q-估计器作为输入,并输出一项新策略,其价值比基于初始Q-得出的策略更快地收敛速度。估计器。进行广泛的数值实验以支持我们的理论发现。我们提出的方法的Python实现可在https://github.com/leyuanheart/seal上获得。
translated by 谷歌翻译
A / B测试或在线实验是一种标准的业务策略,可以在制药,技术和传统行业中与旧产品进行比较。在双面市场平台(例如优步)的在线实验中出现了主要挑战,其中只有一个单位接受一系列处理随着时间的推移。在这些实验中,给定时间的治疗会影响当前结果以及未来的结果。本文的目的是引入用于在这些实验中携带A / B测试的加强学习框架,同时表征长期治疗效果。我们所提出的测试程序允许顺序监控和在线更新。它通常适用于不同行业的各种治疗设计。此外,我们系统地研究了我们测试程序的理论特性(例如,尺寸和功率)。最后,我们将框架应用于模拟数据和从技术公司获得的真实数据示例,以说明其在目前的实践中的优势。我们的测试的Python实现是在https://github.com/callmespring/causalrl上找到的。
translated by 谷歌翻译
Reinforcement learning (RL) is one of the most vibrant research frontiers in machine learning and has been recently applied to solve a number of challenging problems. In this paper, we primarily focus on off-policy evaluation (OPE), one of the most fundamental topics in RL. In recent years, a number of OPE methods have been developed in the statistics and computer science literature. We provide a discussion on the efficiency bound of OPE, some of the existing state-of-the-art OPE methods, their statistical properties and some other related research directions that are currently actively explored.
translated by 谷歌翻译
乘车共享公司等双面市场通常涉及一组跨时间和/或位置做出顺序决策的主题。随着智能手机和物联网的快速发展,它们实质上改变了人类的运输格局。在本文中,我们考虑了乘车共享公司的大规模车队管理,这些公司涉及随着时间的推移接收产品(或治疗)序列的不同领域的多个单元。在这些研究中出现了主要的技术挑战,例如政策评估,因为(i)空间和时间附近会导致位置和时间之间的干扰; (ii)大量位置导致维度的诅咒。为了同时解决这两个挑战,我们介绍了在这些研究中进行政策评估的多机构增强学习(MARL)框架。我们提出了新的估计量,即在不同产品下的平均结果,尽管州行动空间具有很高的差异性。提出的估计量在模拟实验中有利。我们进一步说明了我们的方法使用从双面市场公司获得的真实数据集来评估应用不同的补贴策略的效果。我们提出的方法的Python实现可在https://github.com/runzhestat/causalmarl上获得。
translated by 谷歌翻译
预测一组结果 - 而不是独特的结果 - 是统计学习中不确定性定量的有前途的解决方案。尽管有关于构建具有统计保证的预测集的丰富文献,但适应未知的协变量转变(实践中普遍存在的问题)还是一个严重的未解决的挑战。在本文中,我们表明具有有限样本覆盖范围保证的预测集是非信息性的,并提出了一种新型的无灵活分配方法PredSet-1Step,以有效地构建了在未知协方差转移下具有渐近覆盖范围保证的预测集。我们正式表明我们的方法是\ textIt {渐近上可能是近似正确},对大型样本的置信度有很好的覆盖误差。我们说明,在南非队列研究中,它在许多实验和有关HIV风险预测的数据集中实现了名义覆盖范围。我们的理论取决于基于一般渐近线性估计器的WALD置信区间覆盖范围的融合率的新结合。
translated by 谷歌翻译
Evaluating the performance of an ongoing policy plays a vital role in many areas such as medicine and economics, to provide crucial instruction on the early-stop of the online experiment and timely feedback from the environment. Policy evaluation in online learning thus attracts increasing attention by inferring the mean outcome of the optimal policy (i.e., the value) in real-time. Yet, such a problem is particularly challenging due to the dependent data generated in the online environment, the unknown optimal policy, and the complex exploration and exploitation trade-off in the adaptive experiment. In this paper, we aim to overcome these difficulties in policy evaluation for online learning. We explicitly derive the probability of exploration that quantifies the probability of exploring the non-optimal actions under commonly used bandit algorithms. We use this probability to conduct valid inference on the online conditional mean estimator under each action and develop the doubly robust interval estimation (DREAM) method to infer the value under the estimated optimal policy in online learning. The proposed value estimator provides double protection on the consistency and is asymptotically normal with a Wald-type confidence interval provided. Extensive simulations and real data applications are conducted to demonstrate the empirical validity of the proposed DREAM method.
translated by 谷歌翻译
Off-policy evaluation (OPE) is a method for estimating the return of a target policy using some pre-collected observational data generated by a potentially different behavior policy. In some cases, there may be unmeasured variables that can confound the action-reward or action-next-state relationships, rendering many existing OPE approaches ineffective. This paper develops an instrumental variable (IV)-based method for consistent OPE in confounded Markov decision processes (MDPs). Similar to single-stage decision making, we show that IV enables us to correctly identify the target policy's value in infinite horizon settings as well. Furthermore, we propose an efficient and robust value estimator and illustrate its effectiveness through extensive simulations and analysis of real data from a world-leading short-video platform.
translated by 谷歌翻译
This paper studies reinforcement learning (RL) in doubly inhomogeneous environments under temporal non-stationarity and subject heterogeneity. In a number of applications, it is commonplace to encounter datasets generated by system dynamics that may change over time and population, challenging high-quality sequential decision making. Nonetheless, most existing RL solutions require either temporal stationarity or subject homogeneity, which would result in sub-optimal policies if both assumptions were violated. To address both challenges simultaneously, we propose an original algorithm to determine the ``best data chunks" that display similar dynamics over time and across individuals for policy learning, which alternates between most recent change point detection and cluster identification. Our method is general, and works with a wide range of clustering and change point detection algorithms. It is multiply robust in the sense that it takes multiple initial estimators as input and only requires one of them to be consistent. Moreover, by borrowing information over time and population, it allows us to detect weaker signals and has better convergence properties when compared to applying the clustering algorithm per time or the change point detection algorithm per subject. Empirically, we demonstrate the usefulness of our method through extensive simulations and a real data application.
translated by 谷歌翻译
我们考虑在部分可观察到的马尔可夫决策过程(POMDP)中的违法评估(OPE),其中评估策略仅取决于可观察变量,并且行为策略取决于不可观察的潜在变量。现有的作品无论是假设未测量的混乱,还是专注于观察和状态空间都是表格的设置。因此,这些方法在存在未测量的混淆器的情况下遭受大偏差,或者在具有连续或大观察/状态空间的设置中的大方差。在这项工作中,通过引入将目标策略的价值和观察到的数据分布联系起来,提出了具有潜在混淆的POMDPS的新识别方法。在完全可观察到的MDP中,这些桥接功能将熟悉的值函数和评估与行为策略之间的边际密度比减少。我们接下来提出了用于学习这些桥接功能的最小值估计方法。我们的提案允许一般函数近似,因此适用于具有连续或大观察/状态空间的设置。最后,我们基于这些估计的桥梁功能构建了三种估计,对应于基于价值函数的估计器,边缘化重要性采样估计器和双重稳健的估计器。他们的掺入无血症和渐近性质进行了详细研究。
translated by 谷歌翻译
Dynamic treatment regimes assign personalized treatments to patients sequentially over time based on their baseline information and time-varying covariates. In mobile health applications, these covariates are typically collected at different frequencies over a long time horizon. In this paper, we propose a deep spectral Q-learning algorithm, which integrates principal component analysis (PCA) with deep Q-learning to handle the mixed frequency data. In theory, we prove that the mean return under the estimated optimal policy converges to that under the optimal one and establish its rate of convergence. The usefulness of our proposal is further illustrated via simulations and an application to a diabetes dataset.
translated by 谷歌翻译
我们考虑在具有多个可用的多个辅助来源的主要兴趣样本中最佳决策问题。感兴趣的结果是有限的,因为它仅在主要样本中观察到。实际上,这种多个数据源可能属于异质研究,因此不能直接组合。本文提出了一种新的框架来处理异构研究,并通过新的校准最佳决策(CODA)方法同时解决有限的结果,通过利用多种数据来源的常见中间结果来解决。具体地,CODA允许跨不同样品的基线协变量具有均匀或异质的分布。在温和和可测试的假设下,不同样本中的中间结果的条件方法等于基线协变量和治疗信息,我们表明,条件平均结果的提议CODA估计是渐近正常的和更有效的,而不是使用主要样品。此外,由于速率双重稳健性,可以使用简单的插件方法轻松获得CODA估计器的方差。对模拟数据集的广泛实验显示了使用CoDa的经验有效性和提高效率,然后是与来自Eicu的辅助数据的主要样本是MIMIC-III数据集的真实应用程序。
translated by 谷歌翻译
基于A/B测试的政策评估引起了人们对数字营销的极大兴趣,但是在乘车平台(例如Uber和Didi)中的这种评估主要是由于其时间和/或空间依赖性实验的复杂结构而被很好地研究。 。本文的目的是在乘车平台中的政策评估中进行,目的是在平台的政策和换回设计下的感兴趣结果之间建立因果关系。我们提出了一个基于时间变化系数决策过程(VCDP)模型的新型潜在结果框架,以捕获时间依赖性实验中的动态治疗效果。我们通过将其分解为直接效应总和(DE)和间接效应(IE)来进一步表征平均治疗效应。我们为DE和IE制定了估计和推理程序。此外,我们提出了一个时空VCDP来处理时空依赖性实验。对于这两个VCDP模型,我们都建立了估计和推理程序的统计特性(例如弱收敛和渐近力)。我们进行广泛的模拟,以研究拟议估计和推理程序的有限样本性能。我们研究了VCDP模型如何帮助改善DIDI中各种派遣和处置政策的政策评估。
translated by 谷歌翻译
在TAN(2006)边缘敏感模型下,在不观察到的混淆存在下构建平均处理效应的界限问题。结合涉及对冲倾向分数的现有表征具有对问题的新的分布稳健特征,我们提出了我们称之为“双重有效/双重尖锐”(DVD)估计的这些界限的新颖估算器。双重清晰度对应于DVD估计始终估计灵敏度模型所暗示的最有可能(即,夏普)的界限,即使当所有滋扰参数都适当一致时,即使在两个滋扰参数中的一个被击败并实现半污染参数之一。双倍有效性是部分识别的全新财产:DVD估计仍然提供有效,但即使在大多数滋扰参数都被遗漏时,仍然没有锐利。实际上,即使在DVDS点估计无法渐近正常的情况下,标准沃尔德置信区间也可能保持有效。在二进制结果的情况下,DVD估计是特别方便的并且在结果回归和倾向评分方面具有闭合形式的表达。我们展示了模拟研究中的DVD估计,以及对右心导管插入的案例研究。
translated by 谷歌翻译
个性化决定规则(IDR)是一个决定函数,可根据他/她观察到的特征分配给定的治疗。文献中的大多数现有工作考虑使用二进制或有限的许多治疗方案的设置。在本文中,我们专注于连续治疗设定,并提出跳跃间隔 - 学习,开发一个最大化预期结果的个性化间隔值决定规则(I2DR)。与推荐单一治疗的IDRS不同,所提出的I2DR为每个人产生了一系列治疗方案,使其在实践中实施更加灵活。为了获得最佳I2DR,我们的跳跃间隔学习方法估计通过跳转惩罚回归给予治疗和协变量的结果的条件平均值,并基于估计的结果回归函数来衍生相应的最佳I2DR。允许回归线是用于清晰的解释或深神经网络的线性,以模拟复杂的处理 - 协调会相互作用。为了实现跳跃间隔学习,我们开发了一种基于动态编程的搜索算法,其有效计算结果回归函数。当结果回归函数是处理空间的分段或连续功能时,建立所得I2DR的统计特性。我们进一步制定了一个程序,以推断(估计)最佳政策下的平均结果。进行广泛的模拟和对华法林研究的真实数据应用,以证明所提出的I2DR的经验有效性。
translated by 谷歌翻译
上下文的强盗和强化学习算法已成功用于各种交互式学习系统,例如在线广告,推荐系统和动态定价。但是,在高风险应用领域(例如医疗保健)中,它们尚未被广泛采用。原因之一可能是现有方法假定基本机制是静态的,因为它们不会在不同的环境上改变。但是,在许多现实世界中,这些机制可能会跨环境变化,这可能使静态环境假设无效。在本文中,考虑到离线上下文匪徒的框架,我们迈出了解决环境转变问题的一步。我们认为环境转移问题通过因果关系的角度,并提出了多种环境的背景匪徒,从而可以改变基本机制。我们采用因果关系文献的不变性概念,并介绍了政策不变性的概念。我们认为,仅当存在未观察到的变量时,政策不变性才有意义,并表明在这种情况下,保证在适当假设下跨环境概括最佳不变政策。我们的结果建立了因果关系,不变性和上下文土匪之间的具体联系。
translated by 谷歌翻译
现代纵向研究在许多时间点收集特征数据,通常是相同的样本大小顺序。这些研究通常受到{辍学}和积极违规的影响。我们通过概括近期增量干预的效果(转换倾向分数而不是设置治疗价值)来解决这些问题,以适应多种结果和主题辍学。当条件忽略(不需要治疗阳性)时,我们给出了识别表达式的增量干预效果,并导出估计这些效果的非参数效率。然后我们提出了高效的非参数估计器,表明它们以快速参数速率收敛并产生均匀的推理保证,即使在较慢的速率下灵活估计滋扰函数。我们还研究了新型无限时间范围设置中的更传统的确定性效果的增量干预效应的方差比,其中时间点的数量可以随着样本大小而生长,并显示增量干预效果在统计精度下产生近乎指数的收益这个设置。最后,我们通过模拟得出结论,并在研究低剂量阿司匹林对妊娠结果的研究中进行了方法。
translated by 谷歌翻译