Modern video games are becoming richer and more complex in terms of game mechanics. This complexity allows for the emergence of a wide variety of ways to play the game across the players. From the point of view of the game designer, this means that one needs to anticipate a lot of different ways the game could be played. Machine Learning (ML) could help address this issue. More precisely, Reinforcement Learning is a promising answer to the need of automating video game testing. In this paper we present a video game environment which lets us define multiple play-styles. We then introduce CARI: a Configurable Agent with Reward as Input. An agent able to simulate a wide continuum range of play-styles. It is not constrained to extreme archetypal behaviors like current methods using reward shaping. In addition it achieves this through a single training loop, instead of the usual one loop per play-style. We compare this novel training approach with the more classic reward shaping approach and conclude that CARI can also outperform the baseline on archetypes generation. This novel agent could be used to investigate behaviors and balancing during the production of a video game with a realistic amount of training time.
translated by 谷歌翻译
The increasing complexity of gameplay mechanisms in modern video games is leading to the emergence of a wider range of ways to play games. The variety of possible play-styles needs to be anticipated by designers, through automated tests. Reinforcement Learning is a promising answer to the need of automating video game testing. To that effect one needs to train an agent to play the game, while ensuring this agent will generate the same play-styles as the players in order to give meaningful feedback to the designers. We present CARMI: a Configurable Agent with Relative Metrics as Input. An agent able to emulate the players play-styles, even on previously unseen levels. Unlike current methods it does not rely on having full trajectories, but only summary data. Moreover it only requires little human data, thus compatible with the constraints of modern video game production. This novel agent could be used to investigate behaviors and balancing during the production of a video game with a realistic amount of training time.
translated by 谷歌翻译
除了独奏游戏外,棋盘游戏至少需要其他玩家才能玩。因此,当对手失踪时,我们创建了人工智能(AI)代理商来对抗我们。这些AI代理是通过多种方式创建的,但是这些代理的一个挑战是,与我们相比,代理可以具有较高的能力。在这项工作中,我们描述了如何创建玩棋盘游戏的较弱的AI代理。我们使用Tic-Tac-toe,九名成员的莫里斯和曼卡拉,我们的技术使用了增强学习模型,代理商使用Q学习算法来学习这些游戏。我们展示了这些代理商如何学会完美地玩棋盘游戏,然后我们描述了制作这些代理商较弱版本的方法。最后,我们提供了比较AI代理的方法。
translated by 谷歌翻译
自动适应玩家的游戏内容打开新的游戏开发门。在本文中,我们提出了一种使用人物代理和经验指标的架构,这使得能够在进行针对特定玩家人物的程序生成的水平。使用我们的游戏“Grave Rave”,我们证明了这种方法成功地适应了三个不同的三种不同体验指标的基于法则的角色代理。此外,该适应性被证明是特定的,这意味着水平是人的意识,而不仅仅是关于所选度量的一般优化。
translated by 谷歌翻译
Multi-agent artificial intelligence research promises a path to develop intelligent technologies that are more human-like and more human-compatible than those produced by "solipsistic" approaches, which do not consider interactions between agents. Melting Pot is a research tool developed to facilitate work on multi-agent artificial intelligence, and provides an evaluation protocol that measures generalization to novel social partners in a set of canonical test scenarios. Each scenario pairs a physical environment (a "substrate") with a reference set of co-players (a "background population"), to create a social situation with substantial interdependence between the individuals involved. For instance, some scenarios were inspired by institutional-economics-based accounts of natural resource management and public-good-provision dilemmas. Others were inspired by considerations from evolutionary biology, game theory, and artificial life. Melting Pot aims to cover a maximally diverse set of interdependencies and incentives. It includes the commonly-studied extreme cases of perfectly-competitive (zero-sum) motivations and perfectly-cooperative (shared-reward) motivations, but does not stop with them. As in real-life, a clear majority of scenarios in Melting Pot have mixed incentives. They are neither purely competitive nor purely cooperative and thus demand successful agents be able to navigate the resulting ambiguity. Here we describe Melting Pot 2.0, which revises and expands on Melting Pot. We also introduce support for scenarios with asymmetric roles, and explain how to integrate them into the evaluation protocol. This report also contains: (1) details of all substrates and scenarios; (2) a complete description of all baseline algorithms and results. Our intention is for it to serve as a reference for researchers using Melting Pot 2.0.
translated by 谷歌翻译
蒙特卡洛树搜索(MCT)是设计游戏机器人或解决顺序决策问题的强大方法。该方法依赖于平衡探索和开发的智能树搜索。MCT以模拟的形式进行随机抽样,并存储动作的统计数据,以在每个随后的迭代中做出更有教育的选择。然而,该方法已成为组合游戏的最新技术,但是,在更复杂的游戏(例如那些具有较高的分支因素或实时系列的游戏)以及各种实用领域(例如,运输,日程安排或安全性)有效的MCT应用程序通常需要其与问题有关的修改或与其他技术集成。这种特定领域的修改和混合方法是本调查的主要重点。最后一项主要的MCT调查已于2012年发布。自发布以来出现的贡献特别感兴趣。
translated by 谷歌翻译
Starcraft II(SC2)对强化学习(RL)提出了巨大的挑战,其中主要困难包括巨大的状态空间,不同的动作空间和长期的视野。在这项工作中,我们研究了《星际争霸II》全长游戏的一系列RL技术。我们研究了涉及提取的宏观活动和神经网络的层次结构的层次RL方法。我们研究了课程转移培训程序,并在具有4个GPU和48个CPU线的单台计算机上训练代理。在64x64地图并使用限制性单元上,我们对内置AI的获胜率达到99%。通过课程转移学习算法和战斗模型的混合物,我们在最困难的非作战水平内置AI(7级)中获得了93%的胜利率。在本文的扩展版本中,我们改进了架构,以针对作弊水平训练代理商,并在8级,9级和10级AIS上达到胜利率,为96%,97%和94 %, 分别。我们的代码在https://github.com/liuruoze/hiernet-sc2上。为了为我们的工作以及研究和开源社区提供基线,我们将其复制了一个缩放版本的Mini-Alphastar(MAS)。 MAS的最新版本为1.07,可以在具有564个动作的原始动作空间上进行培训。它旨在通过使超参数可调节来在单个普通机器上进行训练。然后,我们使用相同的资源将我们的工作与MAS进行比较,并表明我们的方法更有效。迷你α的代码在https://github.com/liuruoze/mini-alphastar上。我们希望我们的研究能够阐明对SC2和其他大型游戏有效增强学习的未来研究。
translated by 谷歌翻译
本文调查了具有不平等专业知识的组织之间竞争的动态。多智能体增强学习已被用来模拟和理解各种激励方案的影响,旨在抵消这种不等式。我们设计触摸标记,基于众所周知的多助手粒子环境的游戏,其中两支球队(弱,强),不平等但不断变化的技能水平相互竞争。对于培训此类游戏,我们提出了一种新颖的控制器辅助多智能体增强学习算法\我们的\,它使每个代理商携带策略的集合以及通过选择性地分区示例空间,触发智能角色划分队友。使用C-MADDPG作为潜在的框架,我们向弱小的团队提出了激励计划,使两队的最终奖励成为同一个。我们发现尽管激动人心,但弱小队的最终奖励仍然缺乏强大的团​​队。在检查中,我们意识到弱小球队的整体激励计划并未激励该团队中的较弱代理来学习和改进。要抵消这一点,我们现在特别激励了较弱的球员学习,因此,观察到超越初始阶段的弱小球队与更强大的团队表现。本文的最终目标是制定一种动态激励计划,不断平衡两支球队的奖励。这是通过设计富有奖励的激励计划来实现的,该计划从环境中取出最低信息。
translated by 谷歌翻译
在过去的十年中,多智能经纪人强化学习(Marl)已经有了重大进展,但仍存在许多挑战,例如高样本复杂性和慢趋同稳定的政策,在广泛的部署之前需要克服,这是可能的。然而,在实践中,许多现实世界的环境已经部署了用于生成策略的次优或启发式方法。一个有趣的问题是如何最好地使用这些方法作为顾问,以帮助改善多代理领域的加强学习。在本文中,我们提供了一个原则的框架,用于将动作建议纳入多代理设置中的在线次优顾问。我们描述了在非传记通用随机游戏环境中提供多种智能强化代理(海军上将)的问题,并提出了两种新的基于Q学习的算法:海军上将决策(海军DM)和海军上将 - 顾问评估(Admiral-AE) ,这使我们能够通过适当地纳入顾问(Admiral-DM)的建议来改善学习,并评估顾问(Admiral-AE)的有效性。我们从理论上分析了算法,并在一般加上随机游戏中提供了关于他们学习的定点保证。此外,广泛的实验说明了这些算法:可以在各种环境中使用,具有对其他相关基线的有利相比的性能,可以扩展到大状态行动空间,并且对来自顾问的不良建议具有稳健性。
translated by 谷歌翻译
我们研究了如何根据PlayTraces有效预测游戏角色。可以通过计算玩家与游戏行为的生成模型(所谓的程序角色)之间的动作协议比率来计算游戏角色。但这在计算上很昂贵,并假设很容易获得适当的程序性格。我们提出了两种用于估计玩家角色的方法,一种是使用定期监督的学习和启动游戏机制的汇总度量的方法,另一种是基于序列学习的序列学习的另一种方法。尽管这两种方法在预测与程序角色一致定义的游戏角色时都具有很高的精度,但它们完全无法预测玩家使用问卷的玩家本身定义的游戏风格。这个有趣的结果突出了使用计算方法定义游戏角色的价值。
translated by 谷歌翻译
In fighting games, individual players of the same skill level often exhibit distinct strategies from one another through their gameplay. Despite this, the majority of AI agents for fighting games have only a single strategy for each "level" of difficulty. To make AI opponents more human-like, we'd ideally like to see multiple different strategies at each level of difficulty, a concept we refer to as "multidimensional" difficulty. In this paper, we introduce a diversity-based deep reinforcement learning approach for generating a set of agents of similar difficulty that utilize diverse strategies. We find this approach outperforms a baseline trained with specialized, human-authored reward functions in both diversity and performance.
translated by 谷歌翻译
本文介绍了一种扮演流行的第一人称射击(FPS)视频游戏的AI代理商的AI代理商;来自像素输入的全球攻势(CSGO)。代理人,一个深度神经网络,符合Deathmatch游戏模式内置AI内置AI的媒体难度的性能,同时采用人类的戏剧风格。与在游戏中的许多事先工作不同,CSGO没有API,因此算法必须培训并实时运行。这限制了可以生成的策略数据的数量,妨碍许多增强学习算法。我们的解决方案使用行为克隆 - 在从在线服务器上的人类播放(400万帧,大小与Imagenet相当的400万帧)上刮出的大型嘈杂数据集的行为克隆训练,以及一个较小的高质量专家演示数据集。这种比例是比FPS游戏中的模仿学习的先前工作的数量级。
translated by 谷歌翻译
深度加强学习(RL)的最新进展导致许多2人零和游戏中的相当大的进展,如去,扑克和星际争霸。这种游戏的纯粹对抗性质允许概念上简单地应用R1方法。然而,现实世界的设置是许多代理商,代理交互是复杂的共同利益和竞争方面的混合物。我们认为外交,一个旨在突出由多种代理交互导致的困境的7人棋盘游戏。它还具有大型组合动作空间和同时移动,这对RL算法具有具有挑战性。我们提出了一个简单但有效的近似最佳响应操作员,旨在处理大型组合动作空间并同时移动。我们还介绍了一系列近似虚构游戏的政策迭代方法。通过这些方法,我们成功地将RL申请到外交:我们认为我们的代理商令人信服地令人信服地表明,游戏理论均衡分析表明新过程产生了一致的改进。
translated by 谷歌翻译
注入人类知识是加速加强学习(RL)的有效途径。但是,这些方法是缺乏缺陷的。本文介绍了我们发现的抽象前瞻性模型(思想游戏(TG))与转移学习(TL)相结合是有效的方式。我们将星际争霸II作为我们的学习环境。在设计的TG的帮助下,该代理可以在64x64地图上学习99%的速率,在一个商业机器中仅使用1.08小时的1级内置AI。我们还表明TG方法并不像被认为是限制性的。它可以使用粗略设计的TGS,并且在环境变化时也可以很有用。与以前的基于模型的RL相比,我们显示TG更有效。我们还提出了一种TG假设,其赋予TG不同保真度水平的影响。对于具有不等状态和行动空间的真实游戏,我们提出了一种新颖的XFRNET,其中有用性在验证有用性,同时达到欺骗级别-10 AI的90%的赢利。我们认为TG方法可能会在利用人类知识的进一步研究中进一步研究。
translated by 谷歌翻译
本文通过将影响建模的任务视为强化学习(RL)过程,引入了范式转变。根据拟议的范式,RL代理通过尝试通过其环境(即背景)来最大化一组奖励(即行为和情感模式)来学习政策(即情感互动)。我们的假设是,RL是交织的有效范式影响引起和与行为和情感示威的表现。重要的是,我们对达马西奥的躯体标记假设的第二个假设建设是,情绪可以成为决策的促进者。我们通过训练Go-Blend Agents来对人类的唤醒和行为进行模型来检验赛车游戏中的假设; Go-Blend是Go-explore算法的修改版本,该版本最近在硬探索任务中展示了最高性能。我们首先改变了基于唤醒的奖励功能,并观察可以根据指定的奖励有效地显示情感和行为模式调色板的代理。然后,我们使用基于唤醒的状态选择机制来偏向Go-Blend探索的策略。我们的发现表明,Go-Blend不仅是有效的影响建模范式,而且更重要的是,情感驱动的RL改善了探索并产生更高的性能剂,从而验证了Damasio在游戏领域中的假设。
translated by 谷歌翻译
随着alphago的突破,人机游戏的AI已经成为一个非常热门的话题,吸引了世界各地的研究人员,这通常是测试人工智能的有效标准。已经开发了各种游戏AI系统(AIS),如Plibratus,Openai Five和AlphaStar,击败了专业人员。在本文中,我们调查了最近的成功游戏AIS,覆盖棋盘游戏AIS,纸牌游戏AIS,第一人称射击游戏AIS和实时战略游戏AIS。通过这项调查,我们1)比较智能决策领域的不同类型游戏之间的主要困难; 2)说明了开发专业水平AIS的主流框架和技术; 3)提高当前AIS中的挑战或缺点,以实现智能决策; 4)试图提出奥运会和智能决策技巧的未来趋势。最后,我们希望这篇简短的审查可以为初学者提供介绍,激发了在游戏中AI提交的研究人员的见解。
translated by 谷歌翻译
最近,开创性算法Alphago和Alphazero在游戏学习和深入的强化学习方面开始了一个新时代。尽管Alphago和Alphazero的成就 - 在超级人类层面上玩的GO和其他复杂游戏 - 确实令人印象深刻,但这些架构的缺点是它们需要高度的计算资源。许多研究人员正在寻找类似于alphazero但计算需求较低的方法,因此更容易重现。在本文中,我们选择了Alphazero的重要元素 - 蒙特卡洛树搜索(MCTS)计划阶段 - 并将其与时间差异(TD)学习剂相结合。我们首次将MCT包裹在TD N培训网络上,我们仅在测试时间使用此包装来创建多功能代理,从而使计算需求保持较低。我们将这种新体系结构应用于多个复杂游戏(Othello,Connectfour,Rubik的Cube),并显示了这种受alphazero启发的MCTS包装器所获得的优势。特别是,我们提出的结果是,该代理是第一个在标准硬件(无GPU或TPU)上训练的代理商,击败非常强大的Othello计划EDAX到包括7级(大多数其他学习中的学习中,从而只能失败EDAX至2级)。
translated by 谷歌翻译
Alphazero,Leela Chess Zero和Stockfish Nnue革新了计算机国际象棋。本书对此类引擎的技术内部工作进行了完整的介绍。该书分为四个主要章节 - 不包括第1章(简介)和第6章(结论):第2章引入神经网络,涵盖了所有用于构建深层网络的基本构建块,例如Alphazero使用的网络。内容包括感知器,后传播和梯度下降,分类,回归,多层感知器,矢量化技术,卷积网络,挤压网络,挤压和激发网络,完全连接的网络,批处理归一化和横向归一化和跨性线性单位,残留层,剩余层,过度效果和底漆。第3章介绍了用于国际象棋发动机以及Alphazero使用的经典搜索技术。内容包括minimax,alpha-beta搜索和蒙特卡洛树搜索。第4章展示了现代国际象棋发动机的设计。除了开创性的Alphago,Alphago Zero和Alphazero我们涵盖Leela Chess Zero,Fat Fritz,Fat Fritz 2以及有效更新的神经网络(NNUE)以及MAIA。第5章是关于实施微型α。 Shexapawn是国际象棋的简约版本,被用作为此的示例。 Minimax搜索可以解决六ap峰,并产生了监督学习的培训位置。然后,作为比较,实施了类似Alphazero的训练回路,其中通过自我游戏进行训练与强化学习结合在一起。最后,比较了类似α的培训和监督培训。
translated by 谷歌翻译
哈纳比(Hanabi)是一款合作游戏,它带来了将其他玩家建模到最前沿的问题。在这个游戏中,协调的一组玩家可以利用预先建立的公约发挥出色的效果,但是在临时环境中进行比赛需要代理商适应其伴侣的策略,而没有以前的协调。在这种情况下评估代理需要各种各样的潜在伙伴人群,但是到目前为止,尚未以系统的方式考虑代理的行为多样性。本文提出了质量多样性算法作为有前途的算法类别,以生成多种人群为此目的,并使用MAP-ELITE生成一系列不同的Hanabi代理。我们还假设,在培训期间,代理商可以从多样化的人群中受益,并实施一个简单的“元策略”,以适应代理人的感知行为利基市场。我们表明,即使可以正确推断其伴侣的行为利基市场,即使培训其伴侣的行为利基市场,这种元策略也可以比通才策略更好地工作,但是在实践中,伴侣的行为取决于并干扰了元代理自己的行为,这表明是一条途径对于未来的研究,可以在游戏过程中表征另一个代理商的行为。
translated by 谷歌翻译
在游戏中,就像在其他许多领域一样,设计验证和测试是一个巨大的挑战,因为系统的大小和手动测试变得不可行。本文提出了一种新方法来自动游戏验证和测试。我们的方法利用了数据驱动的模仿学习技术,这几乎不需要精力和时间,并且对机器学习或编程不了解,设计师可以使用该技术有效地训练游戏测试剂。我们通过与行业专家的用户研究一起研究了方法的有效性。调查结果表明,我们的方法确实是一种有效的游戏验证方法,并且数据驱动的编程将是减少努力和提高现代游戏测试质量的有用帮助。该调查还突出了一些开放挑战。在最新文献的帮助下,我们分析了确定的挑战,并提出了适合支持和最大化我们方法实用性的未来研究方向。
translated by 谷歌翻译