Bandit methods for black-box optimisation, such as Bayesian optimisation, are used in a variety of applications including hyper-parameter tuning and experiment design. Recently, multi-fidelity methods have garnered considerable attention since function evaluations have become increasingly expensive in such applications. Multi-fidelity methods use cheap approximations to the function of interest to speed up the overall opti-misation process. However, most multi-fidelity methods assume only a finite number of approximations. In many practical applications however, a continuous spectrum of approximations might be available. For instance, when tuning an expensive neural network, one might choose to approximate the cross validation performance using less data N and/or few training iterations T. Here, the approximations are best viewed as arising out of a continuous two dimensional space (N, T). In this work, we develop a Bayesian optimisa-tion method, BOCA, for this setting. We char-acterise its theoretical properties and show that it achieves better regret than than strategies which ignore the approximations. BOCA outperforms several other baselines in synthetic and real experiments .
translated by 谷歌翻译