随着深度学习技术扩展到现实世界推荐任务,已经开发出许多深度神经网络的协作滤波(CF)模型基于各种神经结构,例如多层的神经架构将用户项目交互项目投影到潜伏特征空间中Perceptron,自动编码器和图形神经网络。然而,大多数现有的协作过滤系统不充分设计用于处理缺失的数据。特别是,为了在训练阶段注入负信号,这些解决方案很大程度上依赖于未观察到的用户项交互,并且简单地将它们视为负实例,这带来了推荐性能下降。为了解决问题,我们开发了一个协作反射增强的AutoEncoder网络(Cranet),它能够探索从观察到和未观察的用户项交互的可转移知识。 Cranet的网络架构由具有反射接收器网络的集成结构和信息融合自动统计器模块形成,其推荐框架具有在互动和非互动项目上编码隐式用户的成对偏好的能力。另外,基于参数正规化的捆绑重量方案旨在对两级颅骨模型进行鲁棒联合训练。我们终于在对应于两个推荐任务的四个不同基准数据集上进行了实验验证了Cranet,以表明,与各种最先进的推荐技术相比,脱叠用户项交互的负信号提高了性能。我们的源代码可在https://github.com/akaxlh/cranet上获得。
translated by 谷歌翻译
许多以前的研究旨在增加具有深度神经网络技术的协同过滤,以实现更好的推荐性能。但是,大多数现有的基于深度学习的推荐系统专为建模单数类型的用户项目交互行为而设计,这几乎无法蒸馏用户和项目之间的异构关系。在实际推荐方案中,存在多重的用户行为,例如浏览和购买。由于用户的多行为模式在不同的项目上俯视,现有推荐方法不足以捕获来自用户多行为数据的异构协作信号。灵感灵感来自图形神经网络的结构化数据建模,这项工作提出了一个图形神经多行为增强建议(GNMR)框架,其明确地模拟了基于图形的消息传递体系结构下不同类型的用户项目交互之间的依赖性。 GNMR向关系聚合网络设计为模拟交互异质性,并且通过用户项交互图递归地执行相邻节点之间的嵌入传播。实体世界推荐数据集的实验表明,我们的GNMR始终如一地优于最先进的方法。源代码可在https://github.com/akaxlh/gnmr中获得。
translated by 谷歌翻译
图形神经网络(GNN)已显示为与用户项目交互图建模的协作过滤(CF)的有前途的解决方案。现有基于GNN的推荐系统的关键思想是递归执行沿用户项目交互边缘传递的消息,以完善编码的嵌入。然而,尽管它们有效,但当前的大多数推荐模型都依赖于足够和高质量的培训数据,因此学习的表示形式可以很好地捕获准确的用户偏好。用户行为数据在许多实际建议方案中通常很嘈杂,并且表现出偏斜的分布,这可能会导致基于GNN的模型中的次优表示性能。在本文中,我们提出了SHT,这是一种新颖的自我监视的超盖变压器框架(SHT),该框架(SHT)通过以明确的方式探索全球协作关系来增强用户表示。具体而言,我们首先赋予图形神经CF范式,以通过HyperGraph Transformer网络维护用户和项目之间的全局协作效果。在蒸馏的全球环境中,提出了一个跨视图生成的自我监督学习组件,用于对用户项目交互图的数据增强,以增强推荐系统的鲁棒性。广泛的实验表明,SHT可以显着改善各种最新基线的性能。进一步的消融研究表明,我们的SHT推荐框架在减轻数据稀疏性和噪声问题方面具有出色的表示能力。源代码和评估数据集可在以下网址获得:https://github.com/akaxlh/sht。
translated by 谷歌翻译
Learning vector representations (aka. embeddings) of users and items lies at the core of modern recommender systems. Ranging from early matrix factorization to recently emerged deep learning based methods, existing efforts typically obtain a user's (or an item's) embedding by mapping from pre-existing features that describe the user (or the item), such as ID and attributes. We argue that an inherent drawback of such methods is that, the collaborative signal, which is latent in user-item interactions, is not encoded in the embedding process. As such, the resultant embeddings may not be sufficient to capture the collaborative filtering effect.In this work, we propose to integrate the user-item interactionsmore specifically the bipartite graph structure -into the embedding process. We develop a new recommendation framework Neural Graph Collaborative Filtering (NGCF), which exploits the useritem graph structure by propagating embeddings on it. This leads to the expressive modeling of high-order connectivity in useritem graph, effectively injecting the collaborative signal into the embedding process in an explicit manner. We conduct extensive experiments on three public benchmarks, demonstrating significant improvements over several state-of-the-art models like HOP-Rec [40] and Collaborative Memory Network [5]. Further analysis verifies the importance of embedding propagation for learning better user and item representations, justifying the rationality and effectiveness of NGCF. Codes are available at https://github.com/ xiangwang1223/neural_graph_collaborative_filtering. CCS CONCEPTS• Information systems → Recommender systems. * In the version published in ACM Digital Library, we find some small bugs; the bugs do not change the comparison results and the empirical findings. In this latest version, we update and correct the experimental results (i.e., the preprocessing of Yelp2018 dataset and the ndcg metric). All updates are highlighted in footnotes.
translated by 谷歌翻译
In recent years, deep neural networks have yielded immense success on speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks on recommender systems has received relatively less scrutiny. In this work, we strive to develop techniques based on neural networks to tackle the key problem in recommendation -collaborative filtering -on the basis of implicit feedback.Although some recent work has employed deep learning for recommendation, they primarily used it to model auxiliary information, such as textual descriptions of items and acoustic features of musics. When it comes to model the key factor in collaborative filtering -the interaction between user and item features, they still resorted to matrix factorization and applied an inner product on the latent features of users and items.By replacing the inner product with a neural architecture that can learn an arbitrary function from data, we present a general framework named NCF, short for Neural networkbased Collaborative Filtering. NCF is generic and can express and generalize matrix factorization under its framework. To supercharge NCF modelling with non-linearities, we propose to leverage a multi-layer perceptron to learn the user-item interaction function. Extensive experiments on two real-world datasets show significant improvements of our proposed NCF framework over the state-of-the-art methods. Empirical evidence shows that using deeper layers of neural networks offers better recommendation performance.
translated by 谷歌翻译
In recent years, Graph Neural Networks (GNNs), which can naturally integrate node information and topological structure, have been demonstrated to be powerful in learning on graph data. These advantages of GNNs provide great potential to advance social recommendation since data in social recommender systems can be represented as user-user social graph and user-item graph; and learning latent factors of users and items is the key. However, building social recommender systems based on GNNs faces challenges. For example, the user-item graph encodes both interactions and their associated opinions; social relations have heterogeneous strengths; users involve in two graphs (e.g., the useruser social graph and the user-item graph). To address the three aforementioned challenges simultaneously, in this paper, we present a novel graph neural network framework (GraphRec) for social recommendations. In particular, we provide a principled approach to jointly capture interactions and opinions in the user-item graph and propose the framework GraphRec, which coherently models two graphs and heterogeneous strengths. Extensive experiments on two real-world datasets demonstrate the effectiveness of the proposed framework GraphRec.
translated by 谷歌翻译
对于许多在线平台(例如,视频共享网站,电子商务系统),学习动态用户的偏好已成为越来越重要的组成部分,以提出顺序建议。先前的工作已经做出了许多努力,以基于各种体系结构(例如,经常性的神经网络和自我注意机制)对用户交互序列进行建模项目项目过渡。最近出现的图形神经网络还用作有用的骨干模型,可在顺序推荐方案中捕获项目依赖性。尽管它们有效,但现有的方法却远远集中在具有单一相互作用类型的项目序列表示上,因此仅限于捕获用户和项目之间的动态异质关系结构(例如,页面视图,添加最佳选择,购买,购买)。为了应对这一挑战,我们设计了多行为超毛力增强的变压器框架(MBHT),以捕获短期和长期跨型行为依赖性。具体而言,多尺度变压器配备了低级别的自我注意力,可从细粒度和粗粒水平的共同编码行为感知的顺序模式。此外,我们将全局多行为依赖性纳入HyperGraph神经体系结构中,以自定义的方式捕获层次长期项目相关性。实验结果证明了我们MBHT在不同环境中的各种最新推荐解决方案的优势。进一步的消融研究证明了我们的模型设计和新MBHT框架的好处的有效性。我们的实施代码在以下网址发布:https://github.com/yuh-yang/mbht-kdd22。
translated by 谷歌翻译
受到计算机愿景和语言理解的深度学习的巨大成功的影响,建议的研究已经转移到发明基于神经网络的新推荐模型。近年来,我们在开发神经推荐模型方面目睹了显着进展,这概括和超越了传统的推荐模型,由于神经网络的强烈代表性。在本调查论文中,我们从建议建模与准确性目标的角度进行了系统审查,旨在总结该领域,促进研究人员和从业者在推荐系统上工作的研究人员和从业者。具体而具体基于推荐建模期间的数据使用,我们将工作划分为协作过滤和信息丰富的建议:1)协作滤波,其利用用户项目交互数据的关键来源; 2)内容丰富的建议,其另外利用与用户和项目相关的侧面信息,如用户配置文件和项目知识图; 3)时间/顺序推荐,其考虑与交互相关的上下文信息,例如时间,位置和过去的交互。在为每种类型审查代表性工作后,我们终于讨论了这一领域的一些有希望的方向。
translated by 谷歌翻译
矩阵分解(MF)已广泛应用于建议系统中的协作过滤。它的贝叶斯变体可以得出用户和项目嵌入的后验分布,并且对稀疏评分更强大。但是,贝叶斯方法受到其后验参数的更新规则的限制,这是由于先验和可能性的结合。变量自动编码器(VAE)可以通过捕获后验参数和数据之间的复杂映射来解决此问题。但是,当前对合作过滤的VAE的研究仅根据明确的数据信息考虑映射,而隐含嵌入信息则被忽略了。在本文中,我们首先从两个观点(以用户为导向和面向项目的观点)得出了贝叶斯MF模型的贝叶斯MF模型的较低界限(ELBO)。根据肘部,我们提出了一个基于VAE的贝叶斯MF框架。它不仅利用数据,还利用嵌入信息来近似用户项目联合分布。正如肘部所建议的那样,近似是迭代的,用户和项目嵌入彼此的编码器的交叉反馈。更具体地说,在上一个迭代中采样的用户嵌入被馈送到项目端编码器中,以估计当前迭代处的项目嵌入的后验参数,反之亦然。该估计还可以关注交叉食品的嵌入式,以进一步利用有用的信息。然后,解码器通过当前重新采样的用户和项目嵌入方式通过矩阵分解重建数据。
translated by 谷歌翻译
协作过滤问题通常是基于矩阵完成技术来解决的,该技术恢复了用户项目交互矩阵的缺失值。在矩阵中,额定位置专门表示给定的用户和额定值。以前的矩阵完成技术倾向于忽略矩阵中每个元素(用户,项目和评分)的位置,但主要关注用户和项目之间的语义相似性,以预测矩阵中缺少的值。本文提出了一种新颖的位置增强的用户/项目表示培训模型,用于推荐,Super-Rec。我们首先使用相对位置评级编码并存储位置增强的额定信息及其用户项目与嵌入的固定尺寸,而不会受矩阵大小影响。然后,我们将受过训练的位置增强用户和项目表示形式应用于最简单的传统机器学习模型,以突出我们表示模型的纯粹新颖性。我们对建议域中的位置增强项目表示形式进行了首次正式介绍和定量分析,并对我们的Super-Rec进行了原则性的讨论,以表现优于典型的协作过滤推荐任务,并具有明确的和隐式反馈。
translated by 谷歌翻译
最近,深度神经网络(DNN)已被广泛引入协作过滤(CF),以产生更准确的建议结果,因为它们可以捕获项目和用户之间复杂的非线性关系的能力。计算复杂性,即消耗很长的培训时间并存储大量可训练的参数。为了解决这些问题,我们提出了一种新的广泛推荐系统,称为“广泛协作过滤”(BRODCF),这是一种有效的非线性协作过滤方法。广泛的学习系统(BLS)代替DNN,用作映射功能,以学习用户和项目之间复杂的非线性关系,这些功能可以避免上述问题,同时达到非常令人满意的建议性能。但是,直接将原始评级数据馈送到BLS不可行。为此,我们提出了一个用户项目评分协作矢量预处理程序,以生成低维用户信息输入数据,该数据能够利用最相似的用户/项目的质量判断。在七个基准数据集上进行的广泛实验证实了所提出的广播算法的有效性
translated by 谷歌翻译
为了减轻传统推荐系统(RSS)的数据稀疏和冷启动问题,将知识图(KGS)纳入补充辅助信息,最近引起了相当大的关注。然而,简单地整合了基于KG的RS模型的KGS,这不一定是提高推荐性能的保证,甚至可能削弱整体模型能力。这是因为这些KG的构建与历史用户项相互作用的集合无关;因此,这些KG的信息可能并不总是有助于推荐给所有用户。在本文中,我们提出了具有个性化推荐的协作指导的细心知识意识的图表卷积网络(CG-KGR)。 CG-KGR是一种新颖的知识意识推荐模型,通过我们提出的协作指导机制,可以实现高度和相干的KG和用户项目交互的学习。具体而言,CG-KGR首先封装与交互式信息摘要的历史相互作用。然后CG-kgr利用它作为提取kgs的信息的指导,最终提供更精确的个性化推荐。我们在两个推荐任务中对四个现实数据集进行了广泛的实验,即TOP-K推荐和点击率(CTR)预测。实验结果表明,CG-KGR模型在Top-K推荐的召回度量方面,最近最初的最先进模型明显优于1.4-27.0%。
translated by 谷歌翻译
Graph Convolution Network (GCN) has become new state-ofthe-art for collaborative filtering. Nevertheless, the reasons of its effectiveness for recommendation are not well understood. Existing work that adapts GCN to recommendation lacks thorough ablation analyses on GCN, which is originally designed for graph classification tasks and equipped with many neural network operations. However, we empirically find that the two most common designs in GCNs -feature transformation and nonlinear activation -contribute little to the performance of collaborative filtering. Even worse, including them adds to the difficulty of training and degrades recommendation performance.In this work, we aim to simplify the design of GCN to make it more concise and appropriate for recommendation. We propose a new model named LightGCN, including only the most essential component in GCN -neighborhood aggregation -for collaborative filtering. Specifically, LightGCN learns user and item embeddings by linearly propagating them on the user-item interaction graph, and uses the weighted sum of the embeddings learned at all layers as the final embedding. Such simple, linear, and neat model is much easier to implement and train, exhibiting substantial improvements (about 16.0% relative improvement on average) over Neural Graph Collaborative Filtering (NGCF) -a state-of-the-art GCN-based recommender model -under exactly the same experimental setting. Further analyses are provided towards the rationality of the simple LightGCN from both analytical and empirical perspectives. Our implementations are available in both TensorFlow
translated by 谷歌翻译
To offer accurate and diverse recommendation services, recent methods use auxiliary information to foster the learning process of user and item representations. Many SOTA methods fuse different sources of information (user, item, knowledge graph, tags, etc.) into a graph and use Graph Neural Networks to introduce the auxiliary information through the message passing paradigm. In this work, we seek an alternative framework that is light and effective through self-supervised learning across different sources of information, particularly for the commonly accessible item tag information. We use a self-supervision signal to pair users with the auxiliary information associated with the items they have interacted with before. To achieve the pairing, we create a proxy training task. For a given item, the model predicts the correct pairing between the representations obtained from the users that have interacted with this item and the assigned tags. This design provides an efficient solution, using the auxiliary information directly to enhance the quality of user and item embeddings. User behavior in recommendation systems is driven by the complex interactions of many factors behind the decision-making processes. To make the pairing process more fine-grained and avoid embedding collapse, we propose an intent-aware self-supervised pairing process where we split the user embeddings into multiple sub-embedding vectors. Each sub-embedding vector captures a specific user intent via self-supervised alignment with a particular cluster of tags. We integrate our designed framework with various recommendation models, demonstrating its flexibility and compatibility. Through comparison with numerous SOTA methods on seven real-world datasets, we show that our method can achieve better performance while requiring less training time. This indicates the potential of applying our approach on web-scale datasets.
translated by 谷歌翻译
现在,推荐系统已经变得繁荣,旨在通过学习嵌入来预测用户对项目的潜在兴趣。图形神经网络的最新进展〜(GNNS)还提供带有强大备份的推荐系统,从用户项图中学习嵌入。但是,由于数据收集困难,仅利用用户项交互遭受冷启动问题。因此,目前的努力建议将社交信息与用户项目相互作用融合以缓解它,这是社会推荐问题。现有工作使用GNNS同时聚合两个社交链接和用户项交互。但是,它们都需要集中存储的社交链接和用户的互动,从而导致隐私问题。此外,根据严格的隐私保护,在一般数据保护规则下,将来可能不可行的数据存储可能是不可行的,敦促分散的社会建议框架。为此,我们设计了一个小说框架\ textbf {fe} delated \ textbf {so} cial推荐与\ textbf {g} raph神经网络(fesog)。首先,FeSog采用关系的关注和聚集来处理异质性。其次,Fesog Infers使用本地数据来保留个性化的用户嵌入。最后但并非最不重要的是,所提出的模型采用伪标签技术,其中包含项目采样,以保护隐私和增强培训。三个现实世界数据集的广泛实验可以证明FeSog在完成社会建议和隐私保护方面的有效性。我们是为我们所知,为社会建议提供联邦学习框架的第一项工作。
translated by 谷歌翻译
Social recommender systems (SocialRS) simultaneously leverage user-to-item interactions as well as user-to-user social relations for the task of generating item recommendations to users. Additionally exploiting social relations is clearly effective in understanding users' tastes due to the effects of homophily and social influence. For this reason, SocialRS has increasingly attracted attention. In particular, with the advance of Graph Neural Networks (GNN), many GNN-based SocialRS methods have been developed recently. Therefore, we conduct a comprehensive and systematic review of the literature on GNN-based SocialRS. In this survey, we first identify 80 papers on GNN-based SocialRS after annotating 2151 papers by following the PRISMA framework (Preferred Reporting Items for Systematic Reviews and Meta-Analysis). Then, we comprehensively review them in terms of their inputs and architectures to propose a novel taxonomy: (1) input taxonomy includes 5 groups of input type notations and 7 groups of input representation notations; (2) architecture taxonomy includes 8 groups of GNN encoder, 2 groups of decoder, and 12 groups of loss function notations. We classify the GNN-based SocialRS methods into several categories as per the taxonomy and describe their details. Furthermore, we summarize the benchmark datasets and metrics widely used to evaluate the GNN-based SocialRS methods. Finally, we conclude this survey by presenting some future research directions.
translated by 谷歌翻译
共享符号跨域顺序推荐(SCSR)任务旨在通过利用多个域中的混合用户行为推荐下一个项目。随着越来越多的用户倾向于在不同的平台上注册并与他人共享访问特定于域的服务,它正在引起极大的研究关注。现有关于SCSR的作品主要依赖于基于复发的神经网络(RNN)模型的采矿顺序模式,这些模型受到以下局限性:1)基于RNN的方法,基于RNN的方法绝大多数目标是发现单用户行为中的顺序依赖性。它们的表现不足以捕获SCSR中多个实体之间的关系。 2)所有现有方法通过潜在空间中的知识转移桥接两个域,并忽略显式的跨域图结构。 3)没有现有研究考虑项目之间的时间间隔信息,这对于表征不同项目和学习判别性表示的顺序建议至关重要。在这项工作中,我们提出了一种新的基于图的解决方案,即TIDA-GCN,以应对上述挑战。具体来说,我们首先将每个域中的用户和项目链接为图。然后,我们设计了一个域感知图形卷积网络,以学习用户特异性节点表示。为了充分说明用户对项目的域特异性偏好,进一步开发了两个有效的注意机制,以选择性地指导消息传递过程。此外,为了进一步增强项目和帐户级的表示学习,我们将时间间隔纳入消息传递中,并为学习项目的交互式特征设计一个帐户意识的自我发项模块。实验证明了我们提出的方法从各个方面的优越性。
translated by 谷歌翻译
协作过滤(CF)是推荐系统中广泛搜索的问题。线性自动编码器是CF的一种完善的方法,它通过编码用户项目交互来估计项目项目关系。尽管线性自动编码器的性能出色,但由于项目数量不断增长而导致的计算和存储成本迅速增加,限制了它们在大规模的现实情况下的可及性。最近,基于图的方法在具有高扩展性的CF上取得了成功,并已证明在用户项目交互模型中具有线性自动编码器的共同点。在此激励的情况下,我们提出了通过Item-Item图分区(ERGP)提出的有效且可扩展的建议,旨在解决线性自动编码器的局限性。特别是,提出了递归图形分区策略,以确保将项目集分为有限大小的几个分区。线性自动编码器在分区中编码用户项目交互,同时保留整个项目集中的全局信息。这允许ERGP保证项目数量增加时具有高效率和高可扩展性。在3个公共数据集和3个开放基准数据集上进行的实验证明了ERGP的有效性,ERGP的效率优于较低的培训时间和存储成本的最先进模型。
translated by 谷歌翻译
在大多数现实世界中的推荐方案中,多种行为(例如,单击,添加到购物车,采购等)的多类型,这对于学习用户的多方面偏好是有益的。由于多种类型的行为明确表现出依赖性,因此有效地对复杂行为依赖性建模对于多行为预测至关重要。最先进的多行为模型以所有历史互动为输入都没有区别地学习行为依赖性。但是,不同的行为可能反映了用户偏好的不同方面,这意味着某些无关的互动可能会像预测目标行为的声音一样发挥作用。为了解决上述局限性,我们向多行为建议介绍了多功能学习。更具体地说,我们提出了一种新颖的粗到五个知识增强的多功能学习(CKML)框架,以学习不同行为的共享和特定于行为的利益。 CKML引入了两个高级模块,即粗粒兴趣提取(CIE)和细粒度的行为相关性(FBC),它们共同起作用以捕获细粒度的行为依赖性。 CIE使用知识感知信息来提取每个兴趣的初始表示。 FBC结合了动态路由方案,以在兴趣之间进一步分配每个行为。此外,我们使用自我注意机制在兴趣水平上将不同的行为信息相关联。三个现实世界数据集的经验结果验证了我们模型在利用多行为数据方面的有效性和效率。进一步的实验证明了每个模块的有效性以及多行为数据共享和特定建模范式的鲁棒性和优越性。
translated by 谷歌翻译
在大数据时代,推荐系统在我们日常生活中的关键信息过滤表现出了杰出的成功。近年来,推荐系统的技术发展,从感知学习到认知推理,这些认知推理将推荐任务作为逻辑推理的过程,并取得了重大改进。但是,推理中的逻辑陈述隐含地承认有序无关紧要,甚至没有考虑在许多建议任务中起重要作用的时间信息。此外,与时间上下文合并的建议模型往往是自我集中的,即自动更加(少)将相关性(不相关)分别集中在相关性上。为了解决这些问题,在本文中,我们提出了一种基于神经协作推理(TISANCR)的推荐模型的时间感知自我注意力,该模型将时间模式和自我注意机制集成到基于推理的建议中。特别是,以相对时间为代表的时间模式,提供上下文和辅助信息来表征用户在建议方面的偏好,而自我注意力则是利用自我注意力来提炼信息的模式并抑制无关紧要的。因此,自我煽动的时间信息的融合提供了对用户偏好的更深入表示。基准数据集的广泛实验表明,所提出的Tisancr取得了重大改进,并始终优于最先进的建议方法。
translated by 谷歌翻译