在软件项目中引入机器学习(ML)组件创造了软件工程师与数据科学家和其他专家合作。虽然合作可以始终具有挑战性,但ML介绍了探索性模型开发过程的额外挑战,需要额外的技能和知识,测试ML系统的困难,需要连续演化和监测,以及非传统质量要求,如公平性和解释性。通过采访来自28个组织的45名从业者,我们确定了在建立和将ML系统部署到生产时面临的关键合作挑战。我们报告了生产ML系统的开发中的共同合作点,以获得要求,数据和集成以及相应的团队模式和挑战。我们发现,这些挑战中的大部分挑战围绕通信,文档,工程和流程以及收集建议以解决这些挑战。
translated by 谷歌翻译
随着各种公开的AI伦理原则的共识,差距仍然可以随时采用设计和开发负责任的AI系统。我们研究了来自澳大利亚国家科学研究机构(CSIRO)的研究人员和工程师的实践和经验,他们参与设计和开发AI系统的一系列目的。半结构化访谈用于检查参与者的做法如何与澳大利亚政府提出的一套高级AI伦理原则涉及并对齐。原则包括:隐私保护和安全,可靠性和安全性,透明度和解释性,公平性,竞争性,责任,人以人为本的价值观和人类,社会与环境福祉。研究了研究人员和工程师的见解以及在原则的实际应用中为它们提供的挑战。最后,提供了一系列组织响应,以支持实施高级AI道德原则。
translated by 谷歌翻译
机器学习(ML)系统的开发和部署可以用现代工具轻松执行,但该过程通常是匆忙和意思是结束的。缺乏勤奋会导致技术债务,范围蠕变和未对准的目标,模型滥用和失败,以及昂贵的后果。另一方面,工程系统遵循明确定义的流程和测试标准,以简化高质量,可靠的结果的开发。极端是航天器系统,其中关键任务措施和鲁棒性在开发过程中根深蒂固。借鉴航天器工程和ML的经验(通过域名通过产品的研究),我们开发了一种经过验证的机器学习开发和部署的系统工程方法。我们的“机器学习技术准备水平”(MLTRL)框架定义了一个原则的过程,以确保强大,可靠和负责的系统,同时为ML工作流程流线型,包括来自传统软件工程的关键区别。 MLTRL甚至更多,MLTRL为跨团队和组织的人们定义了一个人工智能和机器学习技术的人员。在这里,我们描述了通过生产化和部署在医学诊断,消费者计算机视觉,卫星图像和粒子物理学等领域,以通过生产和部署在基本研究中开发ML方法的几个现实世界使用情况的框架和阐明。
translated by 谷歌翻译
组织依靠机器学习工程师(MLE)来操作ML,即部署和维护生产中的ML管道。操作ML或MLOP的过程包括(i)数据收集和标记的连续循环,(ii)实验以改善ML性能,(iii)在多阶段部署过程中评估,以及(iv)监视(iv)性能下降。当一起考虑这些责任似乎令人震惊 - 任何人如何进行MLOP,没有解决的挑战,对工具制造商有什么影响?我们对在包括聊天机器人,自动驾驶汽车和金融在内的许多应用程序中工作的18个MLE进行了半结构化的民族志访谈。我们的访谈暴露了三个变量,这些变量控制了生产ML部署的成功:速度,验证和版本。我们总结了成功实验,部署和维持生产绩效的共同实践。最后,我们讨论了受访者的痛点和反图案,对工具设计产生了影响。
translated by 谷歌翻译
人工智能(AI)治理调节行使权威和控制AI的管理。它旨在通过有效利用数据并最大程度地减少与AI相关的成本和风险来利用AI。尽管AI治理和AI伦理等主题在理论,哲学,社会和监管层面上进行了详尽的讨论,但针对公司和公司的AI治理工作有限。这项工作将AI产品视为系统,在该系统中,通过机器学习(ML)模型(培训)数据传递关键功能。我们通过在AI和相关领域(例如ML)合成文献来得出一个概念框架。我们的框架将AI治理分解为数据的治理,(ML)模型和(AI)系统沿着四个维度。它与现有的IT和数据治理框架和实践有关。它可以由从业者和学者都采用。对于从业者来说,主要是研究论文的综合,但从业者的出版物和监管机构的出版物也为实施AI治理提供了宝贵的起点,而对于学者来说,该论文强调了许多AI治理领域,值得更多关注。
translated by 谷歌翻译
如今,由于最近在人工智能(AI)和机器学习(ML)中的近期突破,因此,智能系统和服务越来越受欢迎。然而,机器学习不仅满足软件工程,不仅具有有希望的潜力,而且还具有一些固有的挑战。尽管最近的一些研究努力,但我们仍然没有明确了解开发基于ML的申请和当前行业实践的挑战。此外,目前尚不清楚软件工程研究人员应将其努力集中起来,以更好地支持ML应用程序开发人员。在本文中,我们报告了一个旨在了解ML应用程序开发的挑战和最佳实践的调查。我们合成从80名从业者(以不同的技能,经验和应用领域)获得的结果为17个调查结果;概述ML应用程序开发的挑战和最佳实践。参与基于ML的软件系统发展的从业者可以利用总结最佳实践来提高其系统的质量。我们希望报告的挑战将通知研究界有关需要调查的主题,以改善工程过程和基于ML的申请的质量。
translated by 谷歌翻译
负责任的AI被广泛认为是我们时代最大的科学挑战之一,也是释放AI市场并增加采用率的关键。为了应对负责任的AI挑战,最近已经发布了许多AI伦理原则框架,AI系统应该符合这些框架。但是,没有进一步的最佳实践指导,从业者除了真实性之外没有什么。同样,在算法级别而不是系统级的算法上进行了重大努力,主要集中于数学无关的道德原则(例如隐私和公平)的一部分。然而,道德问题在开发生命周期的任何步骤中都可能发生,从而超过AI算法和模型以外的系统的许多AI,非AI和数据组件。为了从系统的角度操作负责任的AI,在本文中,我们采用了一种面向模式的方法,并根据系统的多媒体文献综述(MLR)的结果提出了负责任的AI模式目录。与其呆在道德原则层面或算法层面上,我们专注于AI系统利益相关者可以在实践中采取的模式,以确保开发的AI系统在整个治理和工程生命周期中负责。负责的AI模式编目将模式分为三组:多层次治理模式,可信赖的过程模式和负责任的逐设计产品模式。这些模式为利益相关者实施负责任的AI提供了系统性和可行的指导。
translated by 谷歌翻译
数据对于机器学习(ML)模型的开发和评估至关重要。但是,在部署所得模型时,使用有问题或不适当的数据集可能会造成危害。为了通过对数据集进行更故意的反思和创建过程的透明度来鼓励负责任的练习,研究人员和从业人员已开始倡导增加数据文档,并提出了几个数据文档框架。但是,几乎没有研究这些数据文档框架是否满足创建和消费数据集的ML从业者的需求。为了解决这一差距,我们着手了解ML从业人员的数据文档感知,需求,挑战和Desiderata,目的是推导设计要求,以便为将来的数据文档框架提供信息。我们对一家大型国际技术公司的14名ML从业者进行了一系列半结构化访谈。我们让他们回答从数据集的数据表中提取的问题列表(Gebru,2021)。我们的发现表明,目前的数据文档方法在很大程度上是临时的,而且本质上是近视的。参与者表达了对数据文档框架的需求,可以适应其上下文,并将其集成到现有的工具和工作流程中,并尽可能自动化。尽管事实上,数据文档框架通常是从负责人的AI的角度出发的,但参与者并未在他们被要求回答的问题与负责的AI含义之间建立联系。此外,参与者通常会在数据集消费者的需求中优先考虑,并提供了不熟悉其数据集可能需要知道的信息。基于这些发现,我们为将来的数据文档框架得出了七个设计要求。
translated by 谷歌翻译
已经开发出各种工具和实践来支持从业者识别,评估和减轻AI系统造成的公平相关危害。然而,现有研究突出了这些工具和实践的预期设计与特定背景下的使用之间的差距,包括由组织因素在塑造公平工作中发挥的作用引起的差距。在本文中,我们研究了一个这样的实践的这些差距:AI系统的分类评估,旨在揭示人口统计组之间的表现差异。通过在三个技术公司的十支队伍中进行半结构化访谈和三十三名艾尔从业人员,我们在设计分列的评估时,我们识别从业者的流程,挑战,并对支持的需求。我们发现从业者在选择绩效指标时面临挑战,识别最相关的直接利益相关者和在其上进行重点的人口统计集团,并收集其进行分类评估的数据集。更一般地说,我们识别对公平工作的影响,这些工作缺乏与直接利益相关者的订婚,优先考虑通过边缘化群体的客户,以及以规模部署AI系统的驱动器。
translated by 谷歌翻译
在进行研究,设计和系统开发时,HCI研究人员一直在将注意力从个人用户转移到社区。但是,我们的领域尚未建立对社区合并研究方法的挑战,利益和承诺的凝聚力,系统的理解。我们对47个计算研究论文进行了系统的综述和主题分析,讨论了与社区的参与性研究,以开发过去二十年来,以开发技术文物和系统。从这篇评论中,我们确定了与项目演变相关的七个主题:从建立社区伙伴关系到维持结果。我们的发现表明,这些项目的特征是几个紧张关系,其中许多与研究人员的力量和位置以及计算研究环境有关,相对于社区伙伴。我们讨论了我们的发现的含义,并提供方法论建议,以指导HCI,并更广泛地计算研究中心社区的实践。
translated by 谷歌翻译
连续的软件工程在许多领域已变得司空见惯。但是,在调节需要考虑其他问题的密集部门时,通常认为很难采用连续的开发方法,例如DevOps。在本文中,我们提出了一种将拉力请求用作设计控件的方法,并将这种方法应用于认证的医疗系统中的机器学习,这是一种新颖的技术,这是一种新颖的技术,旨在为机器学习系统增加解释性,作为监管审核跟踪。我们以前曾使用过一种工业系统来证明这种方法,以证明如何以连续的方式开发医疗系统。
translated by 谷歌翻译
机器学习传感器代表了嵌入式机器学习应用程序未来的范式转移。当前的嵌入式机器学习(ML)实例化遭受了复杂的整合,缺乏模块化以及数据流动的隐私和安全问题。本文提出了一个以数据为中心的范式,用于将传感器智能嵌入边缘设备上,以应对这些挑战。我们对“传感器2.0”的愿景需要将传感器输入数据和ML处理从硬件级别隔离到更广泛的系统,并提供一个薄的界面,以模拟传统传感器的功能。这种分离导致模块化且易于使用的ML传感器设备。我们讨论了将ML处理构建到嵌入式系统上控制微处理器的软件堆栈中的标准方法所带来的挑战,以及ML传感器的模块化如何减轻这些问题。 ML传感器提高了隐私和准确性,同时使系统构建者更容易将ML集成到其产品中,以简单的组件。我们提供了预期的ML传感器和说明性数据表的例子,以表现出来,并希望这将建立对话使我们朝着传感器2.0迈进。
translated by 谷歌翻译
即将开发我们呼叫所体现的系统的新一代越来越自主和自学习系统。在将这些系统部署到真实上下文中,我们面临各种工程挑战,因为它以有益的方式协调所体现的系统的行为至关重要,确保他们与我们以人为本的社会价值观的兼容性,并且设计可验证安全可靠的人类-Machine互动。我们正在争辩说,引发系统工程将来自嵌入到体现系统的温室,并确保动态联合的可信度,这种情况意识到的情境意识,意图,探索,探险,不断发展,主要是不可预测的,越来越自主的体现系统在不确定,复杂和不可预测的现实世界环境中。我们还识别了许多迫切性的系统挑战,包括可信赖的体现系统,包括强大而人为的AI,认知架构,不确定性量化,值得信赖的自融化以及持续的分析和保证。
translated by 谷歌翻译
尽管机器学习在实践中被广泛使用,但对从业者对潜在安全挑战的理解知之甚少。在这项工作中,我们缩小了这一巨大的差距,并贡献了一项定性研究,重点是开发人员的机器学习管道和潜在脆弱组件的心理模型。类似的研究在其他安全领域有助于发现根本原因或改善风险交流。我们的研究揭示了从业人员的机器学习安全性心理模型的两个方面。首先,从业人员通常将机器学习安全与与机器学习无直接相关的威胁和防御措施混淆。其次,与大多数学术研究相反,我们的参与者认为机器学习的安全性与单个模型不仅相关,而在整个工作流程中,由多个组件组成。与我们的其他发现共同,这两个方面为确定机器学习安全性的心理模型提供了基础学习安全。
translated by 谷歌翻译
部署的AI系统通常不起作用。它们可以随意地构造,不加选择地部署并欺骗性地促进。然而,尽管有这一现实,但学者,新闻界和决策者对功能的关注很少。这导致技术和政策解决方案的重点是“道德”或价值一致的部署,通常会跳过先前的问题,即给定系统功能或完全提供任何好处。描述各种功能失败的危害,我们分析一组案例研究,以创建已知的AI功能问题的分类法。然后,我们指出的是政策和组织响应,这些策略和组织响应经常被忽略,并在功能成为重点后变得更容易获得。我们认为功能是一项有意义的AI政策挑战,是保护受影响社区免受算法伤害的必要第一步。
translated by 谷歌翻译
根据1,870家公司的Rackspace技术的最近调查,总共34%的AI研究和开发项目失败或被遗弃。我们提出了一项新的战略框架,Aistrom,使管理者基于彻底的文献综述,创建一个成功的AI战略。这提供了一种独特而综合的方法,可以通过实施过程中的各种挑战引导经理和牵头开发人员。在Aistrom框架中,我们首先识别顶部N潜在项目(通常为3-5)。对于每个人,彻底分析了七个重点区域。这些领域包括创建一个数据策略,以考虑独特的跨部门机器学习数据要求,安全性和法律要求。然后,Aistrom指导经理思考如何鉴于AI人才稀缺的跨学科人工智能(AI)实施团队。一旦建立了AI团队战略,它需要在组织内,跨部门或作为单独的部门定位。其他考虑因素包括AI作为服务(AIAAS)或外包开发。看着新技术,我们必须考虑偏见,黑匣子模型的合法性等挑战,并保持循环中的人类。接下来,与任何项目一样,我们需要基于价值的关键性能指标(KPI)来跟踪和验证进度。根据公司的风险策略,SWOT分析(优势,劣势,机会和威胁)可以帮助进一步分类入住项目。最后,我们应该确保我们的战略包括持续的雇员的持续教育,以实现采用文化。这种独特综合的框架提供了有价值的,经理和铅开发商的工具。
translated by 谷歌翻译
过去十年已经看到人工智能(AI)的显着进展,这导致了用于解决各种问题的算法。然而,通过增加模型复杂性并采用缺乏透明度的黑匣子AI模型来满足这种成功。为了响应这种需求,已经提出了说明的AI(Xai)以使AI更透明,从而提高关键结构域中的AI。虽然有几个关于Xai主题的Xai主题的评论,但在Xai中发现了挑战和潜在的研究方向,这些挑战和研究方向被分散。因此,本研究为Xai组织的挑战和未来的研究方向提出了系统的挑战和未来研究方向:(1)基于机器学习生命周期的Xai挑战和研究方向,基于机器的挑战和研究方向阶段:设计,开发和部署。我们认为,我们的META调查通过为XAI地区的未来探索指导提供了XAI文学。
translated by 谷歌翻译
虽然人工智能(AI)正在解决现实世界的挑战和转型行业,但对其表现和以负责任的方式做出决定存在严重担忧。最近各国政府,组织和企业发布了许多AI伦理原则和负责任的原则和指南。但是,这些AI伦理原则和指南通常是高级别的,并且不提供关于如何设计和开发负责任的AI系统的具体指导。为了解决这种缺点,我们首先提出了一个实证研究,我们采访了21名科学家和工程师,了解从业者对AI伦理原则及其实施的看法。然后,我们提出了一个模板,使AI道德原则能够以具体模式的形式进行操作,并建议使用新创建的模板的模式列表。这些模式提供了具体的,操作化指导,促进了负责任AI系统的发展。
translated by 谷歌翻译
In this chapter, we review and discuss the transformation of AI technology in HCI/UX work and assess how AI technology will change how we do the work. We first discuss how AI can be used to enhance the result of user research and design evaluation. We then discuss how AI technology can be used to enhance HCI/UX design. Finally, we discuss how AI-enabled capabilities can improve UX when users interact with computing systems, applications, and services.
translated by 谷歌翻译
为了调节机器学习驱动的系统(ML)系统,当前的审核过程主要集中于检测有害算法偏见。尽管这些策略已被证明具有影响力,但在审计过程中涉及ML驱动系统中伦理的文档中概述的一些价值仍然不足。这种未解决的值主要处理无法轻易量化的上下文因素。在本文中,我们开发了一个基于价值的评估框架,该框架不限于偏见审计,并涵盖了算法系统的重要道德原则。我们的框架提出了值的圆形布置,并具有两个双极尺寸,这些二极管尺寸使共同的动机和潜在的紧张局势明确。为了实现这些高级原则,然后将价值分解为特定的标准及其表现形式。但是,其中一些特定于价值的标准是相互排斥的,需要协商。与仅依靠ML研究人员和从业者的意见的其他一些其他审计框架相反,我们认为有必要包括利益相关者,这些利益相关者表现出各种观点,以系统地谈判和巩固价值和标准紧张局势。为此,我们将利益相关者绘制有不同的见解需求,并为将价值表现传达给他们的量身定制手段。因此,我们通过评估框架为当前的ML审计实践做出了贡献,该实践可视化价值之间的亲密关系和紧张局势,并给出了如何对其进行操作的准则,同时向广泛的利益相关者开放评估和审议过程。
translated by 谷歌翻译