现有的类新终身学习研究仅使用单标签的数据,这限制了其对多标签数据的适应性。本文研究了终身多标签(LML)分类,该分类在连续的多标签分类数据流中构建了在线类新型分类器。在LML分类中使用部分标签的数据培训可能会导致旧课程中更严重的灾难性遗忘。为了解决该问题,该研究提出了一个增强图卷积网络(AGCN),并在顺序的部分标签任务中具有建筑增强相关矩阵(ACM)。两个基准的结果表明,该方法可有效地分类和减少遗忘。
translated by 谷歌翻译
传统的检测网络通常需要丰富的标记训练样本,而人类可以只有几个例子逐步学习新概念。本文侧重于更具挑战性,而是逼真的类渐进的少量对象检测问题(IFSD)。它旨在逐渐逐渐地将新型对象的模型转移到几个注释的样本中,而不会灾难性地忘记先前学识的样本。为了解决这个问题,我们提出了一种新的方法,最小的方法可以减少遗忘,更少的培训资源和更强的转移能力。具体而言,我们首先介绍转移策略,以减少不必要的重量适应并改善IFSD的传输能力。在此基础上,我们使用较少的资源消耗方法整合知识蒸馏技术来缓解遗忘,并提出基于新的基于聚类的示例选择过程,以保持先前学习的更多辨别特征。作为通用且有效的方法,最多可以在很大程度上提高各种基准测试的IFSD性能。
translated by 谷歌翻译
Although deep learning approaches have stood out in recent years due to their state-of-the-art results, they continue to suffer from catastrophic forgetting, a dramatic decrease in overall performance when training with new classes added incrementally. This is due to current neural network architectures requiring the entire dataset, consisting of all the samples from the old as well as the new classes, to update the model-a requirement that becomes easily unsustainable as the number of classes grows. We address this issue with our approach to learn deep neural networks incrementally, using new data and only a small exemplar set corresponding to samples from the old classes. This is based on a loss composed of a distillation measure to retain the knowledge acquired from the old classes, and a cross-entropy loss to learn the new classes. Our incremental training is achieved while keeping the entire framework end-to-end, i.e., learning the data representation and the classifier jointly, unlike recent methods with no such guarantees. We evaluate our method extensively on the CIFAR-100 and Im-ageNet (ILSVRC 2012) image classification datasets, and show state-of-the-art performance.
translated by 谷歌翻译
持续学习旨在快速,不断地从一系列任务中学习当前的任务。与其他类型的方法相比,基于经验重播的方法表现出了极大的优势来克服灾难性的遗忘。该方法的一个常见局限性是上一个任务和当前任务之间的数据不平衡,这将进一步加剧遗忘。此外,如何在这种情况下有效解决稳定性困境也是一个紧迫的问题。在本文中,我们通过提出一个通过多尺度知识蒸馏和数据扩展(MMKDDA)提出一个名为Meta学习更新的新框架来克服这些挑战。具体而言,我们应用多尺度知识蒸馏来掌握不同特征级别的远程和短期空间关系的演变,以减轻数据不平衡问题。此外,我们的方法在在线持续训练程序中混合了来自情节记忆和当前任务的样品,从而减轻了由于概率分布的变化而减轻了侧面影响。此外,我们通过元学习更新来优化我们的模型,该更新诉诸于前面所看到的任务数量,这有助于保持稳定性和可塑性之间的更好平衡。最后,我们对四个基准数据集的实验评估显示了提出的MMKDDA框架对其他流行基线的有效性,并且还进行了消融研究,以进一步分析每个组件在我们的框架中的作用。
translated by 谷歌翻译
The dynamic expansion architecture is becoming popular in class incremental learning, mainly due to its advantages in alleviating catastrophic forgetting. However, task confusion is not well assessed within this framework, e.g., the discrepancy between classes of different tasks is not well learned (i.e., inter-task confusion, ITC), and certain priority is still given to the latest class batch (i.e., old-new confusion, ONC). We empirically validate the side effects of the two types of confusion. Meanwhile, a novel solution called Task Correlated Incremental Learning (TCIL) is proposed to encourage discriminative and fair feature utilization across tasks. TCIL performs a multi-level knowledge distillation to propagate knowledge learned from old tasks to the new one. It establishes information flow paths at both feature and logit levels, enabling the learning to be aware of old classes. Besides, attention mechanism and classifier re-scoring are applied to generate more fair classification scores. We conduct extensive experiments on CIFAR100 and ImageNet100 datasets. The results demonstrate that TCIL consistently achieves state-of-the-art accuracy. It mitigates both ITC and ONC, while showing advantages in battle with catastrophic forgetting even no rehearsal memory is reserved.
translated by 谷歌翻译
General Continual Learning (GCL) aims at learning from non independent and identically distributed stream data without catastrophic forgetting of the old tasks that don't rely on task boundaries during both training and testing stages. We reveal that the relation and feature deviations are crucial problems for catastrophic forgetting, in which relation deviation refers to the deficiency of the relationship among all classes in knowledge distillation, and feature deviation refers to indiscriminative feature representations. To this end, we propose a Complementary Calibration (CoCa) framework by mining the complementary model's outputs and features to alleviate the two deviations in the process of GCL. Specifically, we propose a new collaborative distillation approach for addressing the relation deviation. It distills model's outputs by utilizing ensemble dark knowledge of new model's outputs and reserved outputs, which maintains the performance of old tasks as well as balancing the relationship among all classes. Furthermore, we explore a collaborative self-supervision idea to leverage pretext tasks and supervised contrastive learning for addressing the feature deviation problem by learning complete and discriminative features for all classes. Extensive experiments on four popular datasets show that our CoCa framework achieves superior performance against state-of-the-art methods. Code is available at https://github.com/lijincm/CoCa.
translated by 谷歌翻译
Conventionally, deep neural networks are trained offline, relying on a large dataset prepared in advance. This paradigm is often challenged in real-world applications, e.g. online services that involve continuous streams of incoming data. Recently, incremental learning receives increasing attention, and is considered as a promising solution to the practical challenges mentioned above. However, it has been observed that incremental learning is subject to a fundamental difficulty -catastrophic forgetting, namely adapting a model to new data often results in severe performance degradation on previous tasks or classes. Our study reveals that the imbalance between previous and new data is a crucial cause to this problem. In this work, we develop a new framework for incrementally learning a unified classifier, i.e. a classifier that treats both old and new classes uniformly. Specifically, we incorporate three components, cosine normalization, less-forget constraint, and inter-class separation, to mitigate the adverse effects of the imbalance. Experiments show that the proposed method can effectively rebalance the training process, thus obtaining superior performance compared to the existing methods. On CIFAR-100 and ImageNet, our method can reduce the classification errors by more than 6% and 13% respectively, under the incremental setting of 10 phases.
translated by 谷歌翻译
虽然灾难性遗忘的概念是直截了当的,但缺乏对其原因的研究。在本文中,我们系统地探索并揭示了课堂增量学习中灾难性遗忘的三个原因(CIL)。从代表学习的角度来看,(i)当学习者未能正确对准相同相位数据时,逐步忘记在训练所得和(ii)当学习者混淆当前相数据时发生相互相互混淆上一阶段。从特定于任务特定的角度来看,CIL模型遭受了(iii)分类器偏差的问题。在调查现有策略后,我们观察到缺乏关于如何防止相互局部混淆的研究。要启动对该具体问题的研究,我们提出了一种简单但有效的框架,CIL(C4IL)的对比阶级浓度。我们的框架利用了对比度学习的阶级集中效应,产生了具有更好的级别的紧凑性和阶级间可分离的表示分布。经验上,我们观察到C4IL显着降低了相互相连的概率,并且结果提高了多个数据集的多个CIL设置的性能。
translated by 谷歌翻译
很少有课堂学习(FSCIL)旨在仅用几个样本不断学习新概念,这很容易遭受灾难性的遗忘和过度拟合的问题。旧阶级的无法获得性和新颖样本的稀缺性使实现保留旧知识和学习新颖概念之间的权衡很大。受到不同模型的启发,我们在学习新颖概念时记住了不同的知识,我们提出了一个记忆的补充网络(MCNET),以整合多个模型,以在新任务中相互补充不同的记忆知识。此外,为了用很少的新样本更新模型,我们开发了一个原型平滑的硬矿三元组(PSHT)损失,以将新型样品不仅在当前任务中彼此远离,而且在旧分布中脱颖而出。在三个基准数据集(例如CIFAR100,Miniimagenet和Cub200)上进行了广泛的实验,证明了我们提出的方法的优势。
translated by 谷歌翻译
解释通常被认为是黑匣子的深神经网络的行为,尤其是当它们在人类生活的各个方面被采用时。借助可解释的机器学习的优势(可解释的ML),本文提出了一种名为灾难性遗忘的解剖器(或CFD)的新颖工具,以解释在持续学习环境中的灾难性遗忘。我们还根据我们的工具的观测值介绍了一种称为关键冻结的新方法。关于重新系统的实验表达了如何发生灾难性遗忘,尤其是表明该著名网络的哪些组成部分正在忘记。我们的新持续学习算法通过大量余量击败了各种最近的技术,证明了调查的能力。批判性冻结不仅攻击灾难性的遗忘,而且揭示了解释性。
translated by 谷歌翻译
基于正规化的方法有利于缓解类渐进式学习中的灾难性遗忘问题。由于缺乏旧任务图像,如果分类器在新图像上产生类似的输出,它们通常会假设旧知识得到很好的保存。在本文中,我们发现他们的效果很大程度上取决于旧课程的性质:它们在彼此之间容易区分的课程上工作,但可能在更细粒度的群体上失败,例如,男孩和女孩。在SPIRIT中,此类方法将新数据项目投入到完全连接层中的权重向量中跨越的特征空间,对应于旧类。由此产生的预测在细粒度的旧课程上是相似的,因此,新分类器将逐步失去这些课程的歧视能力。为了解决这个问题,我们提出了一种无记忆生成的重播策略,通过直接从旧分类器生成代表性的旧图像并结合新的分类器培训的新数据来保留细粒度的旧阶级特征。为了解决所产生的样本的均化问题,我们还提出了一种分集体损失,使得产生的样品之间的Kullback Leibler(KL)发散。我们的方法最好是通过先前的基于正规化的方法补充,证明是为了易于区分的旧课程有效。我们验证了上述关于CUB-200-2011,CALTECH-101,CIFAR-100和微小想象的设计和见解,并表明我们的策略优于现有的无记忆方法,并具有清晰的保证金。代码可在https://github.com/xmengxin/mfgr获得
translated by 谷歌翻译
The task of multi-label image recognition is to predict a set of object labels that present in an image. As objects normally co-occur in an image, it is desirable to model the label dependencies to improve the recognition performance. To capture and explore such important dependencies, we propose a multi-label classification model based on Graph Convolutional Network (GCN). The model builds a directed graph over the object labels, where each node (label) is represented by word embeddings of a label, and GCN is learned to map this label graph into a set of inter-dependent object classifiers. These classifiers are applied to the image descriptors extracted by another sub-net, enabling the whole network to be end-to-end trainable. Furthermore, we propose a novel re-weighted scheme to create an effective label correlation matrix to guide information propagation among the nodes in GCN. Experiments on two multi-label image recognition datasets show that our approach obviously outperforms other existing state-of-the-art methods. In addition, visualization analyses reveal that the classifiers learned by our model maintain meaningful semantic topology.
translated by 谷歌翻译
Graph learning is a popular approach for performing machine learning on graph-structured data. It has revolutionized the machine learning ability to model graph data to address downstream tasks. Its application is wide due to the availability of graph data ranging from all types of networks to information systems. Most graph learning methods assume that the graph is static and its complete structure is known during training. This limits their applicability since they cannot be applied to problems where the underlying graph grows over time and/or new tasks emerge incrementally. Such applications require a lifelong learning approach that can learn the graph continuously and accommodate new information whilst retaining previously learned knowledge. Lifelong learning methods that enable continuous learning in regular domains like images and text cannot be directly applied to continuously evolving graph data, due to its irregular structure. As a result, graph lifelong learning is gaining attention from the research community. This survey paper provides a comprehensive overview of recent advancements in graph lifelong learning, including the categorization of existing methods, and the discussions of potential applications and open research problems.
translated by 谷歌翻译
深度学习模型在逐步学习新任务时遭受灾难性遗忘。已经提出了增量学习,以保留旧课程的知识,同时学习识别新课程。一种典型的方法是使用一些示例来避免忘记旧知识。在这种情况下,旧类和新课之间的数据失衡是导致模型性能下降的关键问题。由于数据不平衡,已经设计了几种策略来纠正新类别的偏见。但是,他们在很大程度上依赖于新旧阶层之间偏见关系的假设。因此,它们不适合复杂的现实世界应用。在这项研究中,我们提出了一种假设不足的方法,即多粒性重新平衡(MGRB),以解决此问题。重新平衡方法用于减轻数据不平衡的影响;但是,我们从经验上发现,他们将拟合新的课程。为此,我们进一步设计了一个新颖的多晶正式化项,该项使模型还可以考虑除了重新平衡数据之外的类别的相关性。类层次结构首先是通过将语义或视觉上类似类分组来构建的。然后,多粒性正则化将单热标签向量转换为连续的标签分布,这反映了基于构造的类层次结构的目标类别和其他类之间的关系。因此,该模型可以学习类间的关系信息,这有助于增强新旧课程的学习。公共数据集和现实世界中的故障诊断数据集的实验结果验证了所提出的方法的有效性。
translated by 谷歌翻译
Lifelong learning has attracted much attention, but existing works still struggle to fight catastrophic forgetting and accumulate knowledge over long stretches of incremental learning. In this work, we propose PODNet, a model inspired by representation learning. By carefully balancing the compromise between remembering the old classes and learning new ones, PODNet fights catastrophic forgetting, even over very long runs of small incremental tasks -a setting so far unexplored by current works. PODNet innovates on existing art with an efficient spatialbased distillation-loss applied throughout the model and a representation comprising multiple proxy vectors for each class. We validate those innovations thoroughly, comparing PODNet with three state-of-the-art models on three datasets: CIFAR100, ImageNet100, and ImageNet1000. Our results showcase a significant advantage of PODNet over existing art, with accuracy gains of 12.10, 6.51, and 2.85 percentage points, respectively. 5
translated by 谷歌翻译
持续学习(CL)旨在制定模仿人类能力顺序学习新任务的能力,同时能够保留从过去经验获得的知识。在本文中,我们介绍了内存约束在线连续学习(MC-OCL)的新问题,这对存储器开销对可能算法可以用于避免灾难性遗忘的记忆开销。最多,如果不是全部,之前的CL方法违反了这些约束,我们向MC-OCL提出了一种算法解决方案:批量蒸馏(BLD),基于正则化的CL方法,有效地平衡了稳定性和可塑性,以便学习数据流,同时保留通过蒸馏解决旧任务的能力。我们在三个公开的基准测试中进行了广泛的实验评估,经验证明我们的方法成功地解决了MC-OCL问题,并实现了需要更高内存开销的先前蒸馏方法的可比准确性。
translated by 谷歌翻译
逐渐射击的语义分割(IFSS)目标以逐步扩展模型的能力逐渐扩大了仅由几个样本监督的新图像。但是,在旧课程中学到的特征可能会大大漂移,从而导致灾难性遗忘。此外,很少有针对新课程的像素级细分样本会导致每个学习课程中臭名昭著的过度拟合问题。在本文中,我们明确表示基于类别的语义分割的知识作为类别嵌入和超级类嵌入,前者描述了独家的语义属性,而后者则表示超级类知识作为类共享语义属性。为了解决IFSS问题,我们提出了EHNET,即从两个方面嵌入自适应更高和超级级表示网络。首先,我们提出了一种嵌入自适应的策略,以避免特征漂移,该策略通过超级班级表示保持旧知识,并使用类似课程的方案自适应地更新类别嵌入类别,以涉及在各个会话中学习的新课程。其次,为了抵制很少有培训样本引起的过度拟合问题,通过将所有类别嵌入以进行初始化并与新班级的类别保持一致以进行增强,从而学习了超级班级的嵌入,从而使学会知识有助于学习新知识,从而减轻了绩效绩效的绩效,依赖培训数据量表。值得注意的是,这两种设计为具有足够语义和有限偏见的类提供了表示能力,从而可以执行需要高语义依赖性的分割任务。 Pascal-5i和可可数据集的实验表明,EHNET具有显着优势的新最先进的性能。
translated by 谷歌翻译
持续学习旨在通过以在线学习方式利用过去获得的知识,同时能够在所有以前的任务上表现良好,从而学习一系列任务,这对人工智能(AI)系统至关重要,因此持续学习与传统学习模式相比,更适合大多数现实和复杂的应用方案。但是,当前的模型通常在每个任务上的类标签上学习一个通用表示基础,并选择有效的策略来避免灾难性的遗忘。我们假设,仅从获得的知识中选择相关且有用的零件比利用整个知识更有效。基于这一事实,在本文中,我们提出了一个新框架,名为“选择相关的在线持续学习知识(SRKOCL),该框架结合了一种额外的有效频道注意机制,以选择每个任务的特定相关知识。我们的模型还结合了经验重播和知识蒸馏,以避免灾难性的遗忘。最后,在不同的基准上进行了广泛的实验,竞争性实验结果表明,我们提出的SRKOCL是针对最先进的承诺方法。
translated by 谷歌翻译
在真实世界的环境中,可以通过对象检测器连续遇到来自新类的对象实例。当现有的对象探测器应用于这种情况时,它们在旧课程上的性能显着恶化。据报道,一些努力解决了这个限制,所有这些限制适用于知识蒸馏的变体,以避免灾难性的遗忘。我们注意到虽然蒸馏有助于保留以前的学习,但它阻碍了对新任务的快速适应性,这是增量学习的关键要求。在这种追求中,我们提出了一种学习方法,可以学习重塑模型梯度,使得跨增量任务的信息是最佳的共享。这可通过META学习梯度预处理来确保无缝信息传输,可最大限度地减少遗忘并最大化知识传输。与现有的元学习方法相比,我们的方法是任务不可知,允许将新类的增量添加到对象检测的高容量模型中。我们在Pascal-VOC和MS Coco Datasets上定义的各种增量学习设置中评估了我们的方法,我们的方法对最先进的方法进行了好评。
translated by 谷歌翻译
传统的机器学习系统在封闭世界的环境下部署,这需要在离线培训过程之前的整个培训数据。但是,现实世界应用程序经常面临进入的新类,而模型应不断融合它们。学习范例称为类 - 增量学习(CIL)。我们提出了一个Python工具箱,实现了多个关键算法,用于类渐进式学习,以缓解机器学习界中的研究人员的负担。该工具箱包含CIL的许多创始工作的实现,例如EWC和ICARL,但还提供了最先进的算法,可用于进行新颖的基础研究。这个工具箱,名为python类 - 增量学习的python,可在https://github.com/g-u-n/pycil上获得
translated by 谷歌翻译