FIB/SEM断层扫描代表了电池研究和许多其他领域中三维纳米结构表征的必不可少的工具。然而,在许多情况下,对比度和3D分类/重建问题出现,这极大地限制了该技术的适用性,尤其是在多孔材料上,例如电池或燃料电池中用于电极材料的材料。区分不同的组件(例如主动LI存储颗粒和碳/粘合剂材料)很困难,并且通常可以防止对图像数据进行可靠的定量分析,甚至可能导致关于结构 - 质地关系的错误结论。在这项贡献中,我们提出了一种新型的数据分类方法,该方法是通过FIB/SEM断层扫描获得的三维图像数据及其在NMC电池电极材料中的应用。我们使用两个不同的图像信号,即Angled SE2腔室检测器和Inlens检测器信号的信号,将信号组合在一起并训练一个随机森林,即特定的机器学习算法。我们证明,这种方法可以克服适合多相测量的现有技术的当前局限性,并且即使在当前的最新技术失败或对大型训练集的需求之后,它也可以进行定量数据重建。这种方法可能会作为使用FIB/SEM断层扫描的未来研究指南。
translated by 谷歌翻译
混凝土是建筑,桥梁和道路的标准施工材料。由于安全在这种结构的设计,监测和维护中起着核心作用,因此了解混凝土的开裂行为非常重要。计算机断层扫描捕获建筑材料的微观结构,并允许研究裂纹启动和传播。大3D图像中的裂缝表面的手动分割是不可行的。在本文中,综述了3D图像的自动裂缝分段方法并进行了比较。经典图像处理方法(边缘检测滤波器,模板匹配,最小路径和区域生长算法)和学习方法(卷积神经网络,随机林)在半合成3D图像上进行测试和测试。它们的性能强烈依赖于参数选择,该参数选择应适应图像的灰度范围和混凝土的几何特性。通常,学习方法表现最佳,特别是对于薄裂缝和低灰度对比度。
translated by 谷歌翻译
我们提出了一种新颖的方法,该方法将基于机器学习的交互式图像分割结合在一起,使用Supersoxels与聚类方法结合了用于自动识别大型数据集中类似颜色的图像的聚类方法,从而使分类器的指导重复使用。我们的方法解决了普遍的颜色可变性的问题,并且在生物学和医学图像中通常不可避免,这通常会导致分割恶化和量化精度,从而大大降低了必要的训练工作。效率的这种提高促进了大量图像的量化,从而为高通量成像中的最新技术进步提供了交互式图像分析。所呈现的方法几乎适用于任何图像类型,并代表通常用于图像分析任务的有用工具。
translated by 谷歌翻译
传播相位对比度同步同步rotron MicrotoMography(PPC-SR $ {\ mu} $ CT)是对考古遗骸内部结构的非侵入性和非破坏性访问的黄金标准。在该分析中,需要分割虚拟标本以分开不同的部件或材料,通常需要相当多的人力努力的过程。在MicrotoMograph成像(ASEMI)项目的自动分割中,我们开发了一种自动分割这些容量图像的工具,使用手动分段样本来调谐和培训机器学习模型。对于一套四个古埃及动物木乃伊标本,与手动细分切片相比,达到了94-98%的整体准确性,使用深度学习(97-99%)接近现货商业软件的结果较低的复杂性。对分段输出的定性分析表明,我们的结果在对来自深度学习的人的可用性方面接近,证明了这些技术的使用。
translated by 谷歌翻译
自动图像处理算法可以提高分类异构碳酸盐岩石形态的质量,效率和一致性,可以无缝地处理大量的数据和图像。地质学家面临困难在设定从岩石图像,微计算断层扫描(UCT)或磁共振成像(MRI)中确定岩石物理性质的最佳方法的方向。大多数成功的工作是来自同质岩石,专注于2D图像,较少关注3D并需要数值模拟。目前,图像分析方法会聚到三种方法:图像处理,人工智能和具有人工智能的组合图像处理。在这项工作中,我们提出了两种方法来确定3D UCT和MRI图像的孔隙率:具有图像分辨率的图像处理方法优化高斯算法(IROGA);高斯随机森林机器学习差异(MLDGRF)启用先进的图像识别方法。我们已经建立了参考3D微型模型和收集的图像以校准Iroga和MLDGRF方法。为了评估这些校准方法的预测能力,我们在3D UCT和天然异质碳酸盐岩的MRI图像上运行它们。我们分别测量了三种行业标准方式的碳酸盐岩的孔隙度和岩性,分别为参考值。值得注意的是,与三种实验测量相比,IROGA和MLDGRF的精度产生96.2%和97.1%的精度为96.2%和97.1%,91.7%和94.4%。我们使用两种方法,X射线粉末衍射和晶粒密度测量测量石灰石和硫铁矿参考值。 MLDGRF生产岩性(石灰石和硫铁矿)卷,精度为97.7%。
translated by 谷歌翻译
人类生理学中的各种结构遵循特异性形态,通常在非常细的尺度上表达复杂性。这种结构的例子是胸前气道,视网膜血管和肝血管。可以观察到可以观察到可以观察到可以观察到可以观察到空间排列的磁共振成像(MRI),计算机断层扫描(CT),光学相干断层扫描(OCT)等医学成像模式(MRI),计算机断层扫描(CT),可以观察到空间排列的大量2D和3D图像的集合。这些结构在医学成像中的分割非常重要,因为对结构的分析提供了对疾病诊断,治疗计划和预后的见解。放射科医生手动标记广泛的数据通常是耗时且容易出错的。结果,在过去的二十年中,自动化或半自动化的计算模型已成为医学成像的流行研究领域,迄今为止,许多计算模型已经开发出来。在这项调查中,我们旨在对当前公开可用的数据集,细分算法和评估指标进行全面审查。此外,讨论了当前的挑战和未来的研究方向。
translated by 谷歌翻译
使用(半)自动显微镜生成的大规模电子显微镜(EM)数据集已成为EM中的标准。考虑到大量数据,对所有数据的手动分析都是不可行的,因此自动分析至关重要。自动分析的主要挑战包括分析和解释生物医学图像的注释,并与实现高通量相结合。在这里,我们回顾了自动计算机技术的最新最新技术以及分析细胞EM结构的主要挑战。关于EM数据的注释,分割和可扩展性,讨论了过去五年来开发的高级计算机视觉,深度学习和软件工具。自动图像采集和分析的集成将允许用纳米分辨率对毫米范围的数据集进行高通量分析。
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
在X射线游离电子激光器(XFELS)处的单粒子成像(SPI)特别适合于确定其本地环境中颗粒的3D结构。对于成功的重建,必须从大量获取的图案中分离出来的衍射模式。我们建议将此任务作为图像分类问题制定,并使用卷积神经网络(CNN)架构来解决它。开发了两个CNN配置:一个最大化F1分数的CNN配置和强调高召回的一个配置。我们还将CNN与期望最大化(EM)选择以及尺寸过滤结合起来。我们观察到,我们的CNN选择在我们之前的工作中使用的电子选择的功率谱密度函数的对比度较低。但是,基于CNN的选择的重建提供了类似的结果。将CNN引入SPI实验允许简化重建管道,使研究人员能够在飞行中对模式进行分类,并且因此,它们使他们能够严格控制其实验的持续时间。我们认为,在描述的SPI分析工作流程中提出基于非标准的人工智能(AI)解决方案可能对SPI实验的未来发展有益。
translated by 谷歌翻译
X-ray imaging technology has been used for decades in clinical tasks to reveal the internal condition of different organs, and in recent years, it has become more common in other areas such as industry, security, and geography. The recent development of computer vision and machine learning techniques has also made it easier to automatically process X-ray images and several machine learning-based object (anomaly) detection, classification, and segmentation methods have been recently employed in X-ray image analysis. Due to the high potential of deep learning in related image processing applications, it has been used in most of the studies. This survey reviews the recent research on using computer vision and machine learning for X-ray analysis in industrial production and security applications and covers the applications, techniques, evaluation metrics, datasets, and performance comparison of those techniques on publicly available datasets. We also highlight some drawbacks in the published research and give recommendations for future research in computer vision-based X-ray analysis.
translated by 谷歌翻译
背景和目的:电子显微镜(EM)的进步现在允许数百微米组织的三维(3D)成像具有纳米规模的分辨率,为研究大脑的超微结构提供新的机会。在这项工作中,我们介绍了一种可自由的GACSON软件,用于3D-EM脑组织样本中的骨髓轴突的可视化,分割,评估和形态分析。方法:Gacson软件配备了图形用户界面(GUI)。它自动分段粒细胞轴突的轴外空间及其相应的髓鞘护套,并允许手动分段,校对和分段组件的交互式校正。 GaCson分析骨髓轴突的形态,如轴突口,轴突偏心,髓鞘厚度或G比。结果:我们通过在假手术或创伤性脑损伤(TBI)之后,通过分割和分析Myelizing ansoce在大鼠躯体损伤(TBI)后的六3D-EM体积中的Myelized轴突来说明Gacson的使用。我们的研究结果表明,在损伤后五个月的TBI动物在躯体抑制皮质中近义Cortex中的近期骨髓轴突的等同直径。结论:我们的结果表明,GACSON是3D-EM卷中肢体化轴突的可视化,分割,评估和形态分析的有价值的工具。在麻省理工学院许可证下,Gacson在Https://github.com/andreabehan/g-acson免费提供。
translated by 谷歌翻译
机器学习和计算机视觉技术近年来由于其自动化,适合性和产生惊人结果的能力而迅速发展。因此,在本文中,我们调查了2014年至2022年之间发表的关键研究,展示了不同的机器学习算法研究人员用来分割肝脏,肝肿瘤和肝脉管结构的研究。我们根据感兴趣的组织(肝果,肝肿瘤或肝毒剂)对被调查的研究进行了划分,强调了同时解决多个任务的研究。此外,机器学习算法被归类为受监督或无监督的,如果属于某个方案的工作量很大,则将进一步分区。此外,对文献和包含上述组织面具的网站发现的不同数据集和挑战进行了彻底讨论,强调了组织者的原始贡献和其他研究人员的贡献。同样,在我们的评论中提到了文献中过度使用的指标,这强调了它们与手头的任务的相关性。最后,强调创新研究人员应对需要解决的差距的关键挑战和未来的方向,例如许多关于船舶分割挑战的研究的稀缺性以及为什么需要早日处理他们的缺席。
translated by 谷歌翻译
The automated segmentation and tracking of macrophages during their migration are challenging tasks due to their dynamically changing shapes and motions. This paper proposes a new algorithm to achieve automatic cell tracking in time-lapse microscopy macrophage data. First, we design a segmentation method employing space-time filtering, local Otsu's thresholding, and the SUBSURF (subjective surface segmentation) method. Next, the partial trajectories for cells overlapping in the temporal direction are extracted in the segmented images. Finally, the extracted trajectories are linked by considering their direction of movement. The segmented images and the obtained trajectories from the proposed method are compared with those of the semi-automatic segmentation and manual tracking. The proposed tracking achieved 97.4% of accuracy for macrophage data under challenging situations, feeble fluorescent intensity, irregular shapes, and motion of macrophages. We expect that the automatically extracted trajectories of macrophages can provide pieces of evidence of how macrophages migrate depending on their polarization modes in the situation, such as during wound healing.
translated by 谷歌翻译
The Me 163 was a Second World War fighter airplane and a result of the German air force secret developments. One of these airplanes is currently owned and displayed in the historic aircraft exhibition of the Deutsches Museum in Munich, Germany. To gain insights with respect to its history, design and state of preservation, a complete CT scan was obtained using an industrial XXL-computer tomography scanner. Using the CT data from the Me 163, all its details can visually be examined at various levels, ranging from the complete hull down to single sprockets and rivets. However, while a trained human observer can identify and interpret the volumetric data with all its parts and connections, a virtual dissection of the airplane and all its different parts would be quite desirable. Nevertheless, this means, that an instance segmentation of all components and objects of interest into disjoint entities from the CT data is necessary. As of currently, no adequate computer-assisted tools for automated or semi-automated segmentation of such XXL-airplane data are available, in a first step, an interactive data annotation and object labeling process has been established. So far, seven 512 x 512 x 512 voxel sub-volumes from the Me 163 airplane have been annotated and labeled, whose results can potentially be used for various new applications in the field of digital heritage, non-destructive testing, or machine-learning. This work describes the data acquisition process of the airplane using an industrial XXL-CT scanner, outlines the interactive segmentation and labeling scheme to annotate sub-volumes of the airplane's CT data, describes and discusses various challenges with respect to interpreting and handling the annotated and labeled data.
translated by 谷歌翻译
Physically based rendering of complex scenes can be prohibitively costly with a potentially unbounded and uneven distribution of complexity across the rendered image. The goal of an ideal level of detail (LoD) method is to make rendering costs independent of the 3D scene complexity, while preserving the appearance of the scene. However, current prefiltering LoD methods are limited in the appearances they can support due to their reliance of approximate models and other heuristics. We propose the first comprehensive multi-scale LoD framework for prefiltering 3D environments with complex geometry and materials (e.g., the Disney BRDF), while maintaining the appearance with respect to the ray-traced reference. Using a multi-scale hierarchy of the scene, we perform a data-driven prefiltering step to obtain an appearance phase function and directional coverage mask at each scale. At the heart of our approach is a novel neural representation that encodes this information into a compact latent form that is easy to decode inside a physically based renderer. Once a scene is baked out, our method requires no original geometry, materials, or textures at render time. We demonstrate that our approach compares favorably to state-of-the-art prefiltering methods and achieves considerable savings in memory for complex scenes.
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
X射线微型计算机断层摄影成像中存在固有的视野和分辨率折衷,这限制了多尺寸多孔系统的表征,分析和模型开发。在本文中,我们通过开发3D增强的深层超分辨率(EDSR)卷积神经网络来克服这些权衡来通过来自低分辨率数据的大型空间尺度创建增强的高分辨率数据。配对高分辨率(HR,2 $ \ MU $ M)和低分辨率(LR,6 $ \ MU $ M)来自Bentheimer Rock样本的图像数据用于培训网络。来自训练样本的未见LR和HR数据以及具有不同微结构的另一个样本,用于验证具有各种度量的网络:文本分析,分段行为和孔网络模型(PNM)多相流模拟。经过验证的EDSR网络用于为每个长度为6-7厘米的全核样品生成约1000个高分辨率转速子图像(总图像大小为约6000x6000x32000体素)。每个子培养物都具有从PNMS预测的不同的岩石物理特性,它们组合以创建每个样本的3D连续级模型。在一系列分数流动下模拟低毛细管数不混溶的流动,并直接在1:1的基础上与实验压力和3D饱和度进行比较。 EDSR产生的模型比在存在异质性存在下预测实验行为的基础LR模型更准确,特别是在遇到孔隙尺寸的广泛分布的流动状态下。该模型通常在预测到在实验重复性和三个数量级的实验重复性和相对渗透率内的饱和度准确。所示的工作流程是一个完全预测的,无需校准,并且打开了在真正的多尺度异构系统中的图像,模拟和分析流动的可能性。
translated by 谷歌翻译
心脏周围环境的脂肪沉积与诸如动脉粥样硬化,颈动脉僵硬,冠状动脉钙化,心房颤动等许多健康风险因素相关。这些存款与肥胖有所不相关,这加强了其直接分割以进一步定量。然而,由于所需的人类工作量和医生和技术人员的后续高成本,这些脂肪的手动分割尚未在临床实践中被广泛部署。在这项工作中,我们提出了一种统一的方法,用于自主分割和两种类型的心脏脂肪量化。分段脂肪被称为心外膜和纵隔,并通过心包彼此分开。很多努力都致力于实现最小的用户干预。所提出的方法主要包括注册和分类算法以执行所需的分割。我们比较了多种分类算法对此任务的性能,包括神经网络,概率模型和决策树算法。所提出的方法的实验结果表明,心外膜和纵隔脂肪的平均准确性为98.5%(如果特征正常化,则为99.5%),其平均阳性率为98.0%。平均而言,骰子相似度指数等于97.6%。
translated by 谷歌翻译
在整个宇宙学模拟中,初始条件中的物质密度场的性质对今天形成的结构的特征具有决定性的影响。在本文中,我们使用随机森林分类算法来推断暗物质颗粒是否追溯到初始条件,最终将在肿块上高于一些阈值的暗物质卤素。该问题可能被构成为二进制分类任务,其中物质密度字段的初始条件映射到由光环发现者程序提供的分类标签。我们的研究结果表明,随机森林是有效的工具,无法在不运行完整过程的情况下预测宇宙学模拟的输出。在将来可能使用这些技术来降低计算时间并更有效地探索不同暗物质/暗能候选对宇宙结构的形成的影响。
translated by 谷歌翻译
语义图像分割是手术中的背景知识和自治机器人的重要前提。本领域的状态专注于在微创手术期间获得的传统RGB视频数据,但基于光谱成像数据的全景语义分割并在开放手术期间获得几乎没有注意到日期。为了解决文献中的这种差距,我们正在研究基于在开放手术环境中获得的猪的高光谱成像(HSI)数据的以下研究问题:(1)基于神经网络的HSI数据的充分表示是完全自动化的器官分割,尤其是关于数据的空间粒度(像素与Superpixels与Patches与完整图像)的空间粒度? (2)在执行语义器官分割时,是否有利用HSI数据使用HSI数据,即RGB数据和处理的HSI数据(例如氧合等组织参数)?根据基于20猪的506个HSI图像的全面验证研究,共注释了19个类,基于深度的学习的分割性能 - 贯穿模态 - 与输入数据的空间上下文一致。未处理的HSI数据提供优于RGB数据或来自摄像机提供商的处理数据,其中优势随着输入到神经网络的输入的尺寸而增加。最大性能(应用于整个图像的HSI)产生了0.89(标准偏差(SD)0.04)的平均骰子相似度系数(DSC),其在帧间间变异性(DSC为0.89(SD 0.07)的范围内。我们得出结论,HSI可以成为全自动手术场景理解的强大的图像模型,其具有传统成像的许多优点,包括恢复额外功能组织信息的能力。
translated by 谷歌翻译