虽然罕见疾病的特征在于患病率低,但大约3亿人受到罕见疾病的影响。对这些条件的早期和准确诊断是一般从业者的主要挑战,没有足够的知识来识别它们。除此之外,罕见疾病通常会显示各种表现形式,这可能会使诊断更加困难。延迟的诊断可能会对患者的生命产生负面影响。因此,迫切需要增加关于稀有疾病的科学和医学知识。自然语言处理(NLP)和深度学习可以帮助提取有关罕见疾病的相关信息,以促进其诊断和治疗。本文探讨了几种深度学习技术,例如双向长期内存(BILSTM)网络或基于来自变压器(BERT)的双向编码器表示的深层语境化词表示,以识别罕见疾病及其临床表现(症状和症状) Raredis语料库。该毒品含有超过5,000名罕见疾病和近6,000个临床表现。 Biobert,基于BERT和培训的生物医学Corpora培训的域特定语言表示,获得了最佳结果。特别是,该模型获得罕见疾病的F1分数为85.2%,表现优于所有其他模型。
translated by 谷歌翻译