对于高空间分辨率(HSR)遥感图像,BITEMAREAL PORCHISE的学习始终使用许多成对标记的Bitemeral图像来统治变化检测。但是,成对标签大规模的HSR遥感图像非常昂贵且耗时。在本文中,我们提出了单个暂时的监督学习(StAR),以从新的角度利用不配对图像作为监督信号的对象变化的新角度进行变更检测。星星使我们只能使用\ textbf {未配对}标记的图像训练高准确的更改检测器,并将其推广到现实世界的零位图像。为了评估恒星的有效性,我们设计了一个名为Changestar的简单而有效的变更检测器,可以重复使用Changemixin模块的任何深层语义分割体系结构。全面的实验结果表明,在单个颞监督下,Changestar的表现优于基线,并在偶然的监督下实现了卓越的表现。代码可从https://github.com/z-zheng/changestar获得
translated by 谷歌翻译
For change detection in remote sensing, constructing a training dataset for deep learning models is difficult due to the requirements of bi-temporal supervision. To overcome this issue, single-temporal supervision which treats change labels as the difference of two semantic masks has been proposed. This novel method trains a change detector using two spatially unrelated images with corresponding semantic labels such as building. However, training on unpaired datasets could confuse the change detector in the case of pixels that are labeled unchanged but are visually significantly different. In order to maintain the visual similarity in unchanged area, in this paper, we emphasize that the change originates from the source image and show that manipulating the source image as an after-image is crucial to the performance of change detection. Extensive experiments demonstrate the importance of maintaining visual information between pre- and post-event images, and our method outperforms existing methods based on single-temporal supervision. code is available at https://github.com/seominseok0429/Self-Pair-for-Change-Detection.
translated by 谷歌翻译
监督的深度学习模型取决于大量标记的数据。不幸的是,收集和注释包含所需更改的零花态样本是耗时和劳动密集型的。从预训练模型中转移学习可有效减轻遥感(RS)变化检测(CD)中标签不足。我们探索在预训练期间使用语义信息的使用。不同于传统的监督预训练,该预训练从图像到标签,我们将语义监督纳入了自我监督的学习(SSL)框架中。通常,多个感兴趣的对象(例如,建筑物)以未经切割的RS图像分布在各个位置。我们没有通过全局池操纵图像级表示,而是在每个像素嵌入式上引入点级监督以学习空间敏感的特征,从而使下游密集的CD受益。为了实现这一目标,我们通过使用语义掩码在视图之间的重叠区域上通过类平衡的采样获得了多个点。我们学会了一个嵌入式空间,将背景和前景点分开,并将视图之间的空间对齐点齐聚在一起。我们的直觉是导致的语义歧视性表示与无关的变化不变(照明和无关紧要的土地覆盖)可能有助于改变识别。我们在RS社区中免费提供大规模的图像面罩,用于预训练。在三个CD数据集上进行的大量实验验证了我们方法的有效性。我们的表现明显优于Imagenet预训练,内域监督和几种SSL方法。经验结果表明我们的预训练提高了CD模型的概括和数据效率。值得注意的是,我们使用20%的培训数据获得了比基线(随机初始化)使用100%数据获得竞争结果。我们的代码可用。
translated by 谷歌翻译
变更检测(CD)旨在识别在不同时间拍摄的图像对中发生的变化。先前的方法从头开始设计特定的网络,以预测像素级别中的更改口罩,并与一般分割问题斗争。在本文中,我们提出了一种新的范式,该范式将CD降低到语义分割,这意味着调整现有且强大的语义分割网络以求解CD。这种新的范式方便地享受主流语义分割技术,以解决CD中的一般细分问题。因此,我们可以集中精力研究如何检测变化。我们提出了一种新颖而重要的见解,即CD中存在不同的变化类型,应分别学习它们。基于它,我们设计了一个名为MTF的模块来提取更改信息和融合时间功能。 MTF具有高解释性,并揭示了CD的基本特征。并且大多数分割网络都可以通过我们的MTF模块来解决CD问题。最后,我们提出了C-3PO,该网络可检测像素级别的变化。 C-3PO在没有铃铛和哨子的情况下实现最先进的表现。它很简单但有效,可以被视为该领域的新基线。我们的代码将可用。
translated by 谷歌翻译
在本文中,我们介绍了一个新的建筑数据集,并提出了一种新颖的域泛化方法,以促进从高分辨率遥感图像中提取建筑物的开发。当前建筑数据集的问题涉及它们缺乏多样性,标签的质量不令人满意,并且几乎不用于培训具有良好概括能力的建筑提取模型,以便正确地评估模型在实践中的真实性能场景。为了解决这些问题,我们建立了一个名为WHU-MIX建筑数据集的多样化,大规模和高质量的建筑数据集,该数据集更加面向实践。 WHU-MIX建筑物数据集由一个培训/验证集组成,该培训/验证集包含来自世界各地的43,727个不同图像,以及一个测试集,其中包含来自五大洲其他五个城市的8402张图像。此外,为了进一步提高建筑物提取模型的概括能力,我们提出了一种名为批处理样式混合(BSM)的域概括方法,该方法可以嵌入建筑物的frond-end中,以嵌入为有效的插件模块提取模型,为模型提供逐渐更大的数据分布,以学习数据不变知识。这项研究中进行的实验证实了WHU-MIX建筑数据集的潜力,以提高建筑物提取模型的性能,与其他现有数据集相比,MIOU提高了6-36%。其他数据集中标签不准确的不利影响可能会导致约20%的IOU减少。该实验还证实了所提出的BSM模块在增强模型的概括能力和鲁棒性方面的高性能,超过了13%的基线模型,而MIOU中最新的域概括方法则超过了4-15%。
translated by 谷歌翻译
在这项研究中,提出了一种半监督的学习(SSL)方法,用于改善双颞图像对检测的城市变化检测。所提出的方法适应了双任务暹罗差异网络,该网络不仅可以通过差分解码器进行预测,而且还可以通过语义解码器进行两种图像的片段建筑物。首先,对体系结构进行了修改,以产生从语义预测得出的第二个更改预测。其次,采用SSL来改善监督的变更检测。对于未标记的数据,我们引入了一种损失,鼓励网络预测两个变化输出之间的一致变化。使用SpaceNet7数据集对所提出的方法进行了有关城市变化检测的测试。与三个完全监督的基准相比,SSL取得了改善的结果。
translated by 谷歌翻译
深度学习算法在非常高分辨率(VHR)图像的语义分割方面取得了巨大成功。然而,培训这些模型通常需要大量准确的像素注释,这非常费力且耗时。为了减轻注释负担,本文提出了一个一致性调节的区域生长网络(CRGNET),以实现具有点级注释的VHR图像的语义分割。 CRGNET的关键思想是迭代选择未标记的像素,具有很高的信心,可以从原始稀疏点扩展带注释的区域。但是,由于扩展的注释中可能存在一些错误和噪音,因此直接向它们学习可能会误导网络的培训。为此,我们进一步提出了一致性正则化策略,在该策略中,基本分类器和扩展的分类器被采用。具体而言,基本分类器受原始稀疏注释的监督,而扩展的分类器的目的是从基本分类器生成的扩展注释中学习具有区域生长机制。因此,通过最大程度地减少基础和扩展分类器的预测之间的差异来实现一致性正则化。我们发现如此简单的正则化策略对于控制区域生长机制的质量非常有用。在两个基准数据集上进行的广泛实验表明,所提出的CRGNET显着优于现有的最新方法。代码和预培训模型可在线获得(https://github.com/yonghaoxu/crgnet)。
translated by 谷歌翻译
盒子监督的实例分割最近吸引了大量的研究工作,而在空中图像域中则收到很少的关注。与通用物体集合相比,空中对象具有大型内部差异和阶级相似性与复杂的背景。此外,高分辨率卫星图像中存在许多微小的物体。这使得最近的一对亲和力建模方法不可避免地涉及具有劣势的噪声监督。为了解决这些问题,我们提出了一种新颖的空中实例分割方法,该方法驱动网络为空中对象的一系列级别设置功能,只有盒子注释以端到端的方式。具有精心设计的能量函数的级别集方法而不是学习成对亲和力将对象分段视为曲线演进,这能够准确地恢复对象的边界并防止来自无法区分的背景和类似对象的干扰。实验结果表明,所提出的方法优于最先进的盒子监督实例分段方法。源代码可在https://github.com/liwentomng/boxLevelset上获得。
translated by 谷歌翻译
建筑变更检测是许多重要应用,特别是在军事和危机管理领域。最近用于变化检测的方法已转向深度学习,这取决于其培训数据的质量。因此,大型注释卫星图像数据集的组装对于全球建筑更改监视是必不可少的。现有数据集几乎完全提供近Nadir观看角度。这限制了可以检测到的更改范围。通过提供更大的观察范围,光学卫星的滚动成像模式提出了克服这种限制的机会。因此,本文介绍了S2Looking,一个建筑变革检测数据集,其中包含以各种偏离Nadir角度捕获的大规模侧视卫星图像。 DataSet由5000个批次图像对组成的农村地区,并在全球范围内超过65,920个辅助的变化实例。数据集可用于培训基于深度学习的变更检测算法。它通过提供(1)更大的观察角来扩展现有数据集; (2)大照明差异; (3)额外的农村形象复杂性。为了便于{该数据集的使用,已经建立了基准任务,并且初步测试表明,深度学习算法发现数据集明显比最接近的近Nadir DataSet,Levir-CD +更具挑战性。因此,S2Looking可能会促进现有的建筑变革检测算法的重要进步。 DataSet可在https://github.com/s2looking/使用。
translated by 谷歌翻译
使用遥感图像进行建筑检测和变更检测可以帮助城市和救援计划。此外,它们可用于自然灾害后的建筑损害评估。当前,大多数用于建筑物检测的现有模型仅使用一个图像(预拆架图像)来检测建筑物。这是基于这样的想法:由于存在被破坏的建筑物,后沙仪图像降低了模型的性能。在本文中,我们提出了一种称为暹罗形式的暹罗模型,该模型使用前和垃圾后图像作为输入。我们的模型有两个编码器,并具有分层变压器体系结构。两个编码器中每个阶段的输出都以特征融合的方式给予特征融合,以从disasaster图像生成查询,并且(键,值)是从disasaster图像中生成的。为此,在特征融合中也考虑了时间特征。在特征融合中使用颞变压器的另一个优点是,与CNN相比,它们可以更好地维持由变压器编码器产生的大型接受场。最后,在每个阶段,将颞变压器的输出输入简单的MLP解码器。在XBD和WHU数据集上评估了暹罗形式模型,用于构建检测以及Levir-CD和CDD数据集,以进行更改检测,并可以胜过最新的。
translated by 谷歌翻译
我们对最近的自我和半监督ML技术进行严格的评估,从而利用未标记的数据来改善下游任务绩效,以河床分割的三个遥感任务,陆地覆盖映射和洪水映射。这些方法对于遥感任务特别有价值,因为易于访问未标记的图像,并获得地面真理标签通常可以昂贵。当未标记的图像(标记数据集之外)提供培训时,我们量化性能改进可以对这些遥感分割任务进行期望。我们还设计实验以测试这些技术的有效性,当测试集相对于训练和验证集具有域移位时。
translated by 谷歌翻译
Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.
translated by 谷歌翻译
Deep learning based change detection methods have received wide attentoion, thanks to their strong capability in obtaining rich features from images. However, existing AI-based CD methods largely rely on three functionality-enhancing modules, i.e., semantic enhancement, attention mechanisms, and correspondence enhancement. The stacking of these modules leads to great model complexity. To unify these three modules into a simple pipeline, we introduce Relational Change Detection Transformer (RCDT), a novel and simple framework for remote sensing change detection tasks. The proposed RCDT consists of three major components, a weight-sharing Siamese Backbone to obtain bi-temporal features, a Relational Cross Attention Module (RCAM) that implements offset cross attention to obtain bi-temporal relation-aware features, and a Features Constrain Module (FCM) to achieve the final refined predictions with high-resolution constraints. Extensive experiments on four different publically available datasets suggest that our proposed RCDT exhibits superior change detection performance compared with other competing methods. The therotical, methodogical, and experimental knowledge of this study is expected to benefit future change detection efforts that involve the cross attention mechanism.
translated by 谷歌翻译
In contrast to fully supervised methods using pixel-wise mask labels, box-supervised instance segmentation takes advantage of simple box annotations, which has recently attracted increasing research attention. This paper presents a novel single-shot instance segmentation approach, namely Box2Mask, which integrates the classical level-set evolution model into deep neural network learning to achieve accurate mask prediction with only bounding box supervision. Specifically, both the input image and its deep features are employed to evolve the level-set curves implicitly, and a local consistency module based on a pixel affinity kernel is used to mine the local context and spatial relations. Two types of single-stage frameworks, i.e., CNN-based and transformer-based frameworks, are developed to empower the level-set evolution for box-supervised instance segmentation, and each framework consists of three essential components: instance-aware decoder, box-level matching assignment and level-set evolution. By minimizing the level-set energy function, the mask map of each instance can be iteratively optimized within its bounding box annotation. The experimental results on five challenging testbeds, covering general scenes, remote sensing, medical and scene text images, demonstrate the outstanding performance of our proposed Box2Mask approach for box-supervised instance segmentation. In particular, with the Swin-Transformer large backbone, our Box2Mask obtains 42.4% mask AP on COCO, which is on par with the recently developed fully mask-supervised methods. The code is available at: https://github.com/LiWentomng/boxlevelset.
translated by 谷歌翻译
本文介绍了Dahitra,这是一种具有分层变压器的新型深度学习模型,可在飓风后根据卫星图像对建筑物的损害进行分类。自动化的建筑损害评估为决策和资源分配提供了关键信息,以快速应急响应。卫星图像提供了实时,高覆盖的信息,并提供了向大规模污点后建筑物损失评估提供信息的机会。此外,深入学习方法已证明在对建筑物的损害进行分类方面有希望。在这项工作中,提出了一个基于变压器的新型网络来评估建筑物的损失。该网络利用多个分辨率的层次空间特征,并在将变压器编码器应用于空间特征后捕获特征域的时间差异。当对大规模灾难损坏数据集(XBD)进行测试以构建本地化和损坏分类以及在Levir-CD数据集上进行更改检测任务时,该网络将实现最先进的绩效。此外,我们引入了一个新的高分辨率卫星图像数据集,IDA-BD(与2021年路易斯安那州的2021年飓风IDA有关,以便域名适应以进一步评估该模型的能力,以适用于新损坏的区域。域的适应结果表明,所提出的模型可以适应一个新事件,只有有限的微调。因此,所提出的模型通过更好的性能和域的适应来推进艺术的当前状态。此外,IDA-BD也提供了A高分辨率注释的数据集用于该领域的未来研究。
translated by 谷歌翻译
尽管近期基于深度学习的语义细分,但远程感测图像的自动建筑检测仍然是一个具有挑战性的问题,由于全球建筑物的出现巨大变化。误差主要发生在构建足迹的边界,阴影区域,以及检测外表面具有与周围区域非常相似的反射率特性的建筑物。为了克服这些问题,我们提出了一种生成的对抗基于网络的基于网络的分割框架,其具有嵌入在发电机中的不确定性关注单元和改进模块。由边缘和反向关注单元组成的细化模块,旨在精炼预测的建筑地图。边缘注意力增强了边界特征,以估计更高的精度,并且反向关注允许网络探索先前估计区域中缺少的功能。不确定性关注单元有助于网络解决分类中的不确定性。作为我们方法的权力的衡量标准,截至2021年12月4日,它在Deepglobe公共领导板上的第二名,尽管我们的方法的主要重点 - 建筑边缘 - 并不完全对齐用于排行榜排名的指标。 DeepGlobe充满挑战数据集的整体F1分数为0.745。我们还报告了对挑战的Inria验证数据集的最佳成绩,我们的网络实现了81.28%的总体验证,总体准确性为97.03%。沿着同一条线,对于官方Inria测试数据集,我们的网络总体上得分77.86%和96.41%,而且准确性。
translated by 谷歌翻译
Human civilization has an increasingly powerful influence on the earth system. Affected by climate change and land-use change, natural disasters such as flooding have been increasing in recent years. Earth observations are an invaluable source for assessing and mitigating negative impacts. Detecting changes from Earth observation data is one way to monitor the possible impact. Effective and reliable Change Detection (CD) methods can help in identifying the risk of disaster events at an early stage. In this work, we propose a novel unsupervised CD method on time series Synthetic Aperture Radar~(SAR) data. Our proposed method is a probabilistic model trained with unsupervised learning techniques, reconstruction, and contrastive learning. The change map is generated with the help of the distribution difference between pre-incident and post-incident data. Our proposed CD model is evaluated on flood detection data. We verified the efficacy of our model on 8 different flood sites, including three recent flood events from Copernicus Emergency Management Services and six from the Sen1Floods11 dataset. Our proposed model achieved an average of 64.53\% Intersection Over Union(IoU) value and 75.43\% F1 score. Our achieved IoU score is approximately 6-27\% and F1 score is approximately 7-22\% better than the compared unsupervised and supervised existing CD methods. The results and extensive discussion presented in the study show the effectiveness of the proposed unsupervised CD method.
translated by 谷歌翻译
利用深度学习的水提取需要精确的像素级标签。然而,在像素级别标记高分辨率遥感图像非常困难。因此,我们研究如何利用点标签来提取水体并提出一种名为邻居特征聚合网络(NFANET)的新方法。与PixelLevel标签相比,Point标签更容易获得,但它们会失去许多信息。在本文中,我们利用了局部水体的相邻像素之间的相似性,并提出了邻居采样器来重塑遥感图像。然后,将采样的图像发送到网络以进行特征聚合。此外,我们使用改进的递归训练算法进一步提高提取精度,使水边界更加自然。此外,我们的方法利用相邻特征而不是全局或本地特征来学习更多代表性。实验结果表明,所提出的NFANET方法不仅优于其他研究的弱监管方法,而且还获得与最先进的结果相似。
translated by 谷歌翻译
地球表面不断变化,识别变化在城市规划和可持续发展中发挥着重要作用。虽然多年来已经成功开发了变化检测技术,但这些技术仍然仅限于相关领域的专家和促进者。为了为每个用户提供灵活的进入更改信息并帮助他们更好地了解陆地覆盖的变化,我们介绍了一种新的任务:在多时间空中图像上更改基于检测的视觉问题应答(CDVQA)。特别地,可以查询多时间图像以根据两个输入图像之间的内容改变获得基于高电平的改变的信息。我们首先使用自动问题答案生成方法构建CDVQA数据集,包括多时间图像问题答案三联网。然后,在这项工作中设计了一个基线CDVQA框架,它包含四个部分:多时间特征编码,多时间融合,多模态融合和答案预测。此外,我们还将更改增强模块引入多时间特征编码,旨在结合更多的变更相关信息。最后,研究了CDVQA任务的性能研究不同骨干和多时间融合策略的影响。实验结果为开发更好的CDVQA模型提供了有用的见解,这对未来对此任务的研究很重要。我们将通过公开提供我们的数据集和代码。
translated by 谷歌翻译
Change detection (CD) is an essential earth observation technique. It captures the dynamic information of land objects. With the rise of deep learning, convolutional neural networks (CNN) have shown great potential in CD. However, current CNN models introduce backbone architectures that lose detailed information during learning. Moreover, current CNN models are heavy in parameters, which prevents their deployment on edge devices such as UAVs. In this work, we tackle this issue by proposing RDP-Net: a region detail preserving network for CD. We propose an efficient training strategy that constructs the training tasks during the warmup period of CNN training and lets the CNN learn from easy to hard. The training strategy enables CNN to learn more powerful features with fewer FLOPs and achieve better performance. Next, we propose an effective edge loss that increases the penalty for errors on details and improves the network's attention to details such as boundary regions and small areas. Furthermore, we provide a CNN model with a brand new backbone that achieves the state-of-the-art empirical performance in CD with only 1.70M parameters. We hope our RDP-Net would benefit the practical CD applications on compact devices and could inspire more people to bring change detection to a new level with the efficient training strategy. The code and models are publicly available at https://github.com/Chnja/RDPNet.
translated by 谷歌翻译