同源存在于不同语言的同一文本的多种变体中(例如,德语“Hund”和“猎犬”中的英语意味着“狗”)。它们对各种自然语言处理(NLP)应用构成了挑战,例如机器翻译,交叉语音歧义,计算系统发育和信息检索。解决这一挑战的可能解决方案是识别跨语言对的同源。在本文中,我们描述了为十二个印度语言的两种同源数据集,即梵语,印地文,issamese,奥里亚,kannada,古吉拉蒂,泰米尔,泰卢固,旁遮普,孟加拉,马拉萨和马拉雅拉姆。我们将同源数据从印度语态语言字典数字化,并利用链接的印度语言Wordnets来生成同源集。此外,我们使用Wordnet数据来创建一个False Friends'DataSet for Eleven Language对。我们还使用以前可用的基线同源检测方法评估我们数据集的功效。我们还借助词汇表进行了手动评估,并通过本文释放策划的金标准数据集。
translated by 谷歌翻译
同源是不同语言的同一词汇形式的变体;例如,英语中的“Fonema”和英语中的“音素”是同源的,这两者都意味着'声音单位'。在任何两种语言中自动检测同源的任务可以帮助下游的NLP任务,例如交叉信息检索,计算系统发育和机器翻译。在本文中,我们展示了使用跨语言词嵌入来检测十四印度语言中的同源。我们的方法介绍了从知识图中使用上下文,以生成用于同源检测的改进的特征表示。然后,我们评估了我们对神经电机翻译(NMT)对神经电机翻译(NMT)的影响,作为下游任务。我们评估我们的方法,以检测十二个印度语言的具有挑战性的数据集的方法,即梵语,印地文,issamese,奥里亚,kannada,古吉拉蒂,泰米尔,Telugu,Punjabi,Bengali,Marathi和Malayalam。此外,我们为另外两种印度语言,Konkani和Nepali创建评估数据集。我们在F评分方面,观察到高达18%的分数,以获得同源检测。此外,我们观察到使用我们的方法提取的同源有助于提高NMT质量高达2.76 BLEU。我们还公开发布我们的代码,新建的数据集和交叉语言模型。
translated by 谷歌翻译
自动同源检测(ACD)是一个具有挑战性的任务,用于帮助像机器翻译,信息检索和计算系统发育等这样的NLP应用。身份不明的同源对可能对这些应用构成挑战并导致性能的退化。在本文中,我们检测到Hindi的十个印度语言中的同源词对,并使用深度学习方法来预测单词对是否是同源的。我们将IndowordNet识别为基于基于正交相似性的方法和使用从其所获得的数据的基于正交相似性的方法和列车神经网络模型来检测同源字对的潜在资源。我们将平行的Corpora标识为另一个潜在资源,并对它们进行相同的实验。我们还通过进一步的实验验证Wordnets的贡献,并报告高达26%的提高性能。我们讨论了与密切相关的印度语言中的同源检测的细微差别,并将检测到的同源名单作为数据集发布。我们还观察到的行为,在某种程度上不相关的印度语文对,并在其中释放检测到的同源名单。
translated by 谷歌翻译
自动检测同源有助于机器翻译的下游NLP任务,交叉语言信息检索,计算系统发育和交叉命名实体识别。先前的同源检测任务方法使用正射,语音和语义相似度的特征集。在本文中,我们提出了一种富集特征集的新方法,从人类读者的凝视行为中提取了认知功能。我们收集凝视行为数据,了解一个同源的小样本,并表明提取的认知功能有助于证实检测的任务。但是,凝视数据收集和注释是一个昂贵的任务。我们使用收集的凝视行为数据来预测更大样本的认知功能,并显示预测的认知功能,也显着提高了任务性能。通过先前提出的方法,我们报告了收集的凝视特征的10%,12%使用预测的凝视特征。此外,我们与我们的代码和交叉语言模型一起释放收集的凝视行为数据。
translated by 谷歌翻译
编码单词语义属性的密集词向量或“Word Embeddings”现在已成为机器翻译(MT),问题应答(QA),字感消解(WSD)和信息检索(IR)中的NLP任务的积分。在本文中,我们使用各种现有方法为14个印度语言创建多个单词嵌入。我们将这些嵌入的嵌入式为所有这些语言,萨姆萨姆,孟加拉,古吉拉蒂,印地教派,kannada,konkani,malayalam,marathi,尼泊尔,odiya,punjabi,梵语,泰米尔和泰雅古士在一个单一的存储库中。相对较新的方法,强调迎合上下文(BERT,ELMO等),表明了显着的改进,但需要大量资源来产生可用模型。我们释放使用上下文和非上下文方法生成的预训练嵌入。我们还使用Muse和XLM来培训所有上述语言的交叉语言嵌入。为了展示我们嵌入的效果,我们为所有这些语言评估了我们对XPOS,UPOS和NER任务的嵌入模型。我们使用8种不同的方法释放了436个型号。我们希望他们对资源受限的印度语言NLP有用。本文的标题是指最初在1924年出版的福斯特的着名小说“一段是印度”。
translated by 谷歌翻译
非洲语言仍然滞留在自然语言处理技术的进步中,是缺乏代表性数据的一个原因,具有可以在语言之间传输信息的技术可以帮助减少缺乏数据问题。本文列车Setswana和Sepedi单语法向量,并使用Vecmap为Setsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssswana-sepedi创建交叉语言嵌入式。 Word Embeddings是字向量,其代表单词作为连续浮动数字,其中语义类似的单词映射到N维空间中的附近点。 Word Embeddings的想法是基于分布假设,即在类似上下文中分发了语义类似的单词(Harris,1954)。通过学习两个单独训练的单丝矢量的共享矢量空间来利用单晶嵌入来利用单晶的嵌入,使得具有类似含义的单词由类似的载体表示。在本文中,我们调查Setswana-Sepedi单声道单词矢量的十字旋转嵌入。我们使用Vecmap中的无监督十字形嵌入式培训Setswana-Sepedi跨语言嵌入式。我们使用语义评估任务评估Setswana-Sepedi交叉词表示的质量。对于语义相似性任务,我们将单词和Simlex任务翻译成SetSwana和Sepedi。我们将此数据集发布为其他研究人员的这项工作的一部分。我们评估嵌入式的内在质量,以确定是否有改进单词嵌入的语义表示。
translated by 谷歌翻译
We present, Naamapadam, the largest publicly available Named Entity Recognition (NER) dataset for the 11 major Indian languages from two language families. In each language, it contains more than 400k sentences annotated with a total of at least 100k entities from three standard entity categories (Person, Location and Organization) for 9 out of the 11 languages. The training dataset has been automatically created from the Samanantar parallel corpus by projecting automatically tagged entities from an English sentence to the corresponding Indian language sentence. We also create manually annotated testsets for 8 languages containing approximately 1000 sentences per language. We demonstrate the utility of the obtained dataset on existing testsets and the Naamapadam-test data for 8 Indic languages. We also release IndicNER, a multilingual mBERT model fine-tuned on the Naamapadam training set. IndicNER achieves the best F1 on the Naamapadam-test set compared to an mBERT model fine-tuned on existing datasets. IndicNER achieves an F1 score of more than 80 for 7 out of 11 Indic languages. The dataset and models are available under open-source licenses at https://ai4bharat.iitm.ac.in/naamapadam.
translated by 谷歌翻译
我们介绍Samanantar,是最大的公开可用的并行Corpora Collection,用于指示语言。该集合中的英语和11个上线语言之间总共包含4970万句对(来自两种语言系列)。具体而言,我们从现有的公共可用并行基层编译1240万句对,另外,从网络上挖掘3740万句对,导致4倍增加。我们通过组合许多语料库,工具和方法来挖掘网站的并行句子:(a)Web爬行单格式语料库,(b)文档OCR,用于从扫描的文档中提取句子,(c)用于对齐句子的多语言表示模型,以及(d)近似最近的邻居搜索搜索大量句子。人类评估新矿业的Corpora的样本验证了11种语言的高质量平行句子。此外,我们使用英语作为枢轴语言,从英式并行语料库中提取所有55个指示语言对之间的834百万句子对。我们培训了跨越Samanantar上所有这些语言的多语种NMT模型,这在公开可用的基准上表现出现有的模型和基准,例如弗洛雷斯,建立萨曼塔尔的效用。我们的数据和模型可在Https://indicnlp.ai4bharat.org/samanantar/上公开提供,我们希望他们能够帮助推进NMT和Multibingual NLP的研究。
translated by 谷歌翻译
State-of-the-art natural language processing systems rely on supervision in the form of annotated data to learn competent models. These models are generally trained on data in a single language (usually English), and cannot be directly used beyond that language. Since collecting data in every language is not realistic, there has been a growing interest in crosslingual language understanding (XLU) and low-resource cross-language transfer. In this work, we construct an evaluation set for XLU by extending the development and test sets of the Multi-Genre Natural Language Inference Corpus (MultiNLI) to 15 languages, including low-resource languages such as Swahili and Urdu. We hope that our dataset, dubbed XNLI, will catalyze research in cross-lingual sentence understanding by providing an informative standard evaluation task. In addition, we provide several baselines for multilingual sentence understanding, including two based on machine translation systems, and two that use parallel data to train aligned multilingual bag-of-words and LSTM encoders. We find that XNLI represents a practical and challenging evaluation suite, and that directly translating the test data yields the best performance among available baselines.
translated by 谷歌翻译
知识库,例如Wikidata Amass大量命名实体信息,例如多语言标签,这些信息对于各种多语言和跨语义应用程序非常有用。但是,从信息一致性的角度来看,不能保证这样的标签可以跨语言匹配,从而极大地损害了它们对机器翻译等字段的有用性。在这项工作中,我们研究了单词和句子对准技术的应用,再加上匹配算法,以将从Wikidata提取的10种语言中提取的跨语性实体标签对齐。我们的结果表明,Wikidata的主标签之间的映射将通过任何使用的方法都大大提高(F1分数最高20美元)。我们展示了依赖句子嵌入的方法如何超过所有其他脚本,甚至在不同的脚本上。我们认为,这种技术在测量标签对的相似性上的应用,再加上富含高质量实体标签的知识库,是机器翻译的绝佳资产。
translated by 谷歌翻译
翻译质量估计(QE)是预测机器翻译(MT)输出质量的任务,而无需任何参考。作为MT实际应用中的重要组成部分,这项任务已越来越受到关注。在本文中,我们首先提出了XLMRScore,这是一种基于使用XLM-Roberta(XLMR)模型计算的BertScore的简单无监督的QE方法,同时讨论了使用此方法发生的问题。接下来,我们建议两种减轻问题的方法:用未知令牌和预训练模型的跨语性对准替换未翻译的单词,以表示彼此之间的一致性单词。我们在WMT21 QE共享任务的四个低资源语言对上评估了所提出的方法,以及本文介绍的新的英语FARSI测试数据集。实验表明,我们的方法可以在两个零射击方案的监督基线中获得可比的结果,即皮尔森相关性的差异少于0.01,同时在所有低资源语言对中的平均低资源语言对中的无人看管竞争对手的平均水平超过8%的平均水平超过8%。 。
translated by 谷歌翻译
多种业务场景需要从结构化输入数据中自动生成描述性的人类可读文本。因此,已经开发了针对各种下游任务的事实到文本的系统主要是由于相关数据集的高可用性。直到最近,提出了跨语言事实与文本(XF2T)的问题,该问题是针对多种语言的生成,以及一个数据集,Xalign的八种语言。但是,实际上XF2T生成问题没有严格的工作。我们使用另外四种语言的注释数据扩展了Xalign数据集:旁遮普语,马拉雅拉姆语,阿萨姆语和Oriya。我们在扩展的多语言数据集上使用基于变压器的流行文本生成模型进行了广泛的研究,我们称之为Xalignv2。此外,我们研究了不同文本生成策略的性能:预处理,事实感知的嵌入和结构意识的输入编码的多种变化。我们的广泛实验表明,使用具有结构意识的输入编码的事实感知的嵌入式的多语言MT5模型可以平均在十二种语言中获得最佳结果。我们将代码,数据集和模型公开可用,并希望这将有助于进一步在此关键领域进行进一步的研究。
translated by 谷歌翻译
本文介绍了一个大规模的多模式和多语言数据集,该数据集旨在促进在语言中的上下文使用中对图像进行接地的研究。数据集由选择明确说明在电影字幕句子中表达的概念的图像组成。数据集是一个宝贵的资源,因为(i)图像与文本片段一致,而不是整个句子; (ii)对于文本片段和句子,可以使用多个图像; (iii)这些句子是自由形式和现实世界的; (iv)平行文本是多语言的。我们为人类设置了一个填充游戏,以评估数据集的自动图像选择过程的质量。我们在两个自动任务上显示了数据集的实用程序:(i)填充填充; (ii)词汇翻译。人类评估和自动模型的结果表明,图像可以是文本上下文的有用补充。该数据集将受益于单词视觉基础的研究,尤其是在自由形式句子的背景下,可以从https://doi.org/10.5281/zenodo.5034604获得创意常识许可。
translated by 谷歌翻译
对于自然语言处理应用可能是有问题的,因为它们的含义不能从其构成词语推断出来。缺乏成功的方法方法和足够大的数据集防止了用于检测成语的机器学习方法的开发,特别是对于在训练集中不发生的表达式。我们提出了一种叫做小鼠的方法,它使用上下文嵌入来实现此目的。我们展示了一个新的多字表达式数据集,具有文字和惯用含义,并使用它根据两个最先进的上下文单词嵌入式培训分类器:Elmo和Bert。我们表明,使用两个嵌入式的深度神经网络比现有方法更好地执行,并且能够检测惯用词使用,即使对于训练集中不存在的表达式。我们展示了开发模型的交叉传输,并分析了所需数据集的大小。
translated by 谷歌翻译
Much recent progress in applications of machine learning models to NLP has been driven by benchmarks that evaluate models across a wide variety of tasks. However, these broad-coverage benchmarks have been mostly limited to English, and despite an increasing interest in multilingual models, a benchmark that enables the comprehensive evaluation of such methods on a diverse range of languages and tasks is still missing. To this end, we introduce the Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark, a multi-task benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks. We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models, particularly on syntactic and sentence retrieval tasks. There is also a wide spread of results across languages. We release the benchmark 1 to encourage research on cross-lingual learning methods that transfer linguistic knowledge across a diverse and representative set of languages and tasks.
translated by 谷歌翻译
我们介绍ASNER,这是一种使用基线阿萨姆语NER模型的低资源阿萨姆语言的命名实体注释数据集。该数据集包含大约99k代币,其中包括印度总理和阿萨姆人戏剧演讲中的文字。它还包含个人名称,位置名称和地址。拟议的NER数据集可能是基于深神经的阿萨姆语言处理的重要资源。我们通过训练NER模型进行基准测试数据集并使用最先进的体系结构评估被监督的命名实体识别(NER),例如FastText,Bert,XLM-R,Flair,Muril等。我们实施了几种基线方法,标记BI-LSTM-CRF体系结构的序列。当使用Muril用作单词嵌入方法时,所有基线中最高的F1得分的准确性为80.69%。带注释的数据集和最高性能模型公开可用。
translated by 谷歌翻译
本文涉及捷克,英语和法语语言的跨语言分析。我们使用五个线性转换与LSTM和CNN基于CNN的分类器进行零射击跨语性分类。我们比较了单个转换的性能,此外,我们与现有的类似伯特的模型面对基于转换的方法。我们表明,与单语言分类不同的是,来自目标域的预训练的嵌入对于改善跨语性分类结果至关重要,在单语分类中,效果并非如此独特。
translated by 谷歌翻译
虽然审慎的语言模型(PLM)主要用作通用文本编码器,可以对各种下游任务进行微调,但最近的工作表明它们也可以重新连接以产生高质量的单词表示(即静态单词)嵌入)并在类型级词汇任务中产生良好的性能。虽然现有的工作主要集中在单语和双语环境中PLM的词汇专业化,但在这项工作中,我们将大规模多语言变压器(例如MMTS,例如Mbert或XLM-R)公开,以此为大规模的多语言词法知识,并利用Babelnet作为易于获得的丰富来源。多语言和跨语性类型级词汇知识。具体来说,我们利用Babelnet的多语言合成器来创建$ 50 $语言的同义词对,然后对MMTS(Mbert和XLM-R)进行对比目标指导的词汇专业化程序。我们表明,如此庞大的多语言词汇专业化为两项标准的跨语性词汇任务,双语词典感应和跨语性单词相似性以及跨语性句子检索带来了巨大的收益。至关重要的是,我们观察到在专业化中看不见的语言的收益,表明多语言词汇专业化使得概括无词法约束。在一系列随后的受控实验中,我们证明了MMT对专业化语言中单词表示的预处理质量对性能的影响要比一组约束集的语言多样性更大。令人鼓舞的是,这表明涉及低资源语言的词汇任务从资源丰富的语言的词汇知识中受益最大,通常更多。
translated by 谷歌翻译
Semantic Textual Similarity (STS) measures the meaning similarity of sentences. Applications include machine translation (MT), summarization, generation, question answering (QA), short answer grading, semantic search, dialog and conversational systems. The STS shared task is a venue for assessing the current state-of-the-art. The 2017 task focuses on multilingual and cross-lingual pairs with one sub-track exploring MT quality estimation (MTQE) data. The task obtained strong participation from 31 teams, with 17 participating in all language tracks. We summarize performance and review a selection of well performing methods. Analysis highlights common errors, providing insight into the limitations of existing models. To support ongoing work on semantic representations, the STS Benchmark is introduced as a new shared training and evaluation set carefully selected from the corpus of English STS shared task data (2012-2017). 7 We use 50-dimensional GloVe word embeddings (Pennington et al., 2014) trained on a combination of Gigaword 5 (Parker et al., 2011) and English Wikipedia available at http://nlp.stanford.edu/projects/glove/.8 https://www.mturk.com/ 9 A designation that statistically identifies workers who perform high quality work across a diverse set of tasks.10 Spanish data from 2015 and 2014 uses a 5 point scale that collapses STS labels 4 and 3, removing the distinction between unimportant and important details.
translated by 谷歌翻译
语音处理系统目前不支持绝大多数语言,部分原因是低资源语言中的数据缺乏。交叉语言传输提供了一种引人注目的方法来帮助通过将高资源数据纳入低资源系统来帮助桥接这种数字鸿沟。目前的交叉算法在一些基于文本的任务和与一些低资源语言中的语音相关任务中表现出了成功。但是,缩放语音系统以支持数百个低资源语言仍未解决。为了帮助桥接这种差距,我们提出了一种语言相似性方法,可以有效地识别数百种语言的声学交叉传输对。我们展示了我们在语言家庭分类,语音识别和语音综合任务中的方法的有效性。
translated by 谷歌翻译