因果鉴定是因果推理文献的核心,在该文献中提出了完整的算法来识别感兴趣的因果问题。这些算法的有效性取决于访问正确指定的因果结构的限制性假设。在这项工作中,我们研究了可获得因果结构概率模型的环境。具体而言,因果图中的边缘是分配的概率,例如,可能代表来自领域专家的信念程度。另外,关于边缘的不确定的可能反映了特定统计检验的置信度。在这种情况下自然出现的问题是:给定这样的概率图和感兴趣的特定因果效应,哪些具有最高合理性的子图是什么?我们表明回答这个问题减少了解决NP-HARD组合优化问题,我们称之为边缘ID问题。我们提出有效的算法来近似此问题,并评估我们针对现实世界网络和随机生成图的算法。
translated by 谷歌翻译
Pearl's Do Colculus是一种完整的公理方法,可以从观察数据中学习可识别的因果效应。如果无法识别这种效果,则有必要在系统中执行经常昂贵的干预措施以学习因果效应。在这项工作中,我们考虑了设计干预措施以最低成本来确定所需效果的问题。首先,我们证明了这个问题是NP-HARD,随后提出了一种可以找到最佳解或对数因子近似值的算法。这是通过在我们的问题和最小击球设置问题之间建立联系来完成的。此外,我们提出了几种多项式启发式算法来解决问题的计算复杂性。尽管这些算法可能会偶然发现亚最佳解决方案,但我们的模拟表明它们在随机图上产生了小的遗憾。
translated by 谷歌翻译
常用图是表示和可视化因果关系的。对于少量变量,这种方法提供了简洁和清晰的方案的视图。随着下属的变量数量增加,图形方法可能变得不切实际,并且表示的清晰度丢失。变量的聚类是减少因果图大小的自然方式,但如果任意实施,可能会错误地改变因果关系的基本属性。我们定义了一种特定类型的群集,称为Transit Cluster,保证在某些条件下保留因果效应的可识别性属性。我们提供了一种用于在给定图中查找所有传输群集的声音和完整的算法,并演示集群如何简化因果效应的识别。我们还研究了逆问题,其中一个人以群集的图形开始,寻找扩展图,其中因果效应的可识别性属性保持不变。我们表明这种结构稳健性与过境集群密切相关。
translated by 谷歌翻译
因果结构学习是许多领域的关键问题。通过对感兴趣系统进行实验来学习因果结构。我们解决了设计一批实验的主要原因,每个实验中同时干预多个变量。虽然可能比常用的单变干预措施更具信息丰富,但选择这种干预措施是更具挑战性的,这是由于复合干预措施的双指数组合搜索空间。在本文中,我们开发有效的算法,以优化量化预算限制批次实验的信息性的不同目标函数。通过建立这些目标的新型子模具性质,我们为我们的算法提供近似保证。我们的算法经验上优于随机干预和算法,只能选择单变化干预。
translated by 谷歌翻译
在观察性研究中,经常遇到有关存在或缺乏因果边缘和路径的因果背景知识。由于背景知识而导致的马尔可夫等效dag的子类共享的指向边缘和链接可以由因果关系最大部分定向的无循环图(MPDAG)表示。在本文中,我们首先提供了因果MPDAG的声音和完整的图形表征,并提供了因果MPDAG的最小表示。然后,我们介绍了一种名为Direct Causal子句(DCC)的新颖表示,以统一形式表示所有类型的因果背景知识。使用DCC,我们研究因果背景知识的一致性和等效性,并表明任何因果背景知识集都可以等效地分解为因果MPDAG,以及最小的残留DCC。还提供了多项式时间算法,以检查一致性,等效性并找到分解的MPDAG和残留DCC。最后,有了因果背景知识,我们证明了一个足够且必要的条件来识别因果关系,并且出人意料地发现因果效应的可识别性仅取决于分解的MPDAG。我们还开发了局部IDA型算法,以估计无法识别效应的可能值。模拟表明因果背景知识可以显着提高因果影响的识别性。
translated by 谷歌翻译
We study experiment design for unique identification of the causal graph of a system where the graph may contain cycles. The presence of cycles in the structure introduces major challenges for experiment design as, unlike acyclic graphs, learning the skeleton of causal graphs with cycles may not be possible from merely the observational distribution. Furthermore, intervening on a variable in such graphs does not necessarily lead to orienting all the edges incident to it. In this paper, we propose an experiment design approach that can learn both cyclic and acyclic graphs and hence, unifies the task of experiment design for both types of graphs. We provide a lower bound on the number of experiments required to guarantee the unique identification of the causal graph in the worst case, showing that the proposed approach is order-optimal in terms of the number of experiments up to an additive logarithmic term. Moreover, we extend our result to the setting where the size of each experiment is bounded by a constant. For this case, we show that our approach is optimal in terms of the size of the largest experiment required for uniquely identifying the causal graph in the worst case.
translated by 谷歌翻译
我们研究在有关系统的结构侧信息时学习一组变量的贝叶斯网络(BN)的问题。众所周知,学习一般BN的结构在计算上和统计上具有挑战性。然而,通常在许多应用中,关于底层结构的侧面信息可能会降低学习复杂性。在本文中,我们开发了一种基于递归约束的算法,其有效地将这些知识(即侧信息)纳入学习过程。特别地,我们研究了关于底层BN的两种类型的结构侧信息:(i)其集团数的上限是已知的,或者(ii)它是无菱形的。我们为学习算法提供理论保证,包括每个场景所需的最坏情况的测试数量。由于我们的工作,我们表明可以通过多项式复杂性学习有界树木宽度BNS。此外,我们评估了综合性和现实世界结构的算法的性能和可扩展性,并表明它们优于最先进的结构学习算法。
translated by 谷歌翻译
我们研究了与从介入数据中恢复因果图有关的两个问题:(i)$ \ textIt {verification} $,其中的任务是检查声称的因果图是否正确,并且(ii)$ \ textit {search} $,任务是恢复正确的因果图。对于这两者,我们都希望最大程度地减少执行的干预措施的数量。对于第一个问题,我们给出了一组最小尺寸的原子干预措施的表征,这些干预措施是必要且足以检查所要求的因果图的正确性。我们的表征使用$ \ textit {coving edges} $的概念,这使我们能够获得简单的证据,并且很容易理解早期结果。我们还将结果推广到有限尺寸干预措施和节点依赖性干预成本的设置。对于上述所有设置,我们提供了第一种已知的可验证算法,用于有效地计算(接近)一般图上的最佳验证集。对于第二个问题,我们给出了一种基于图形分离器的简单自适应算法,该算法会产生一个原子干预集,该集合在使用$ \ MATHCAL {O}(\ log n)$ times $ times所需的$所需干预措施时,该算法完全围绕任何必需图表。 \ textIt {verify} $(验证大小)$ n $顶点上的基础dag。相对于验证大小而言,此近似值是紧密的,因为$ \ textit {any} $搜索算法的最差情况是$ \ omega(\ log n)$的最差情况。使用有限的大小干预措施,每个大小$ \ leq k $,我们的算法给出了$ \ mathcal {o}(\ log n \ cdot \ log \ log \ log k)$ factor actialation。我们的结果是第一种已知的算法,该算法对一般未加权图和有界尺寸干预的验证尺寸提供了非平凡的近似保证。
translated by 谷歌翻译
我们根据计算一个扎根于每个顶点的某个加权树的家族而构成的相似性得分提出了一种有效的图形匹配算法。对于两个erd \ h {o} s-r \'enyi图$ \ mathcal {g}(n,q)$,其边缘通过潜在顶点通信相关联,我们表明该算法正确地匹配了所有范围的范围,除了所有的vertices分数外,有了很高的概率,前提是$ nq \ to \ infty $,而边缘相关系数$ \ rho $满足$ \ rho^2> \ alpha \ ailpha \大约0.338 $,其中$ \ alpha $是Otter的树木计数常数。此外,在理论上是必需的额外条件下,可以精确地匹配。这是第一个以显式常数相关性成功的多项式图匹配算法,并适用于稀疏和密集图。相比之下,以前的方法要么需要$ \ rho = 1-o(1)$,要么仅限于稀疏图。该算法的症结是一个经过精心策划的植根树的家族,称为吊灯,它可以有效地从同一树的计数中提取图形相关性,同时抑制不同树木之间的不良相关性。
translated by 谷歌翻译
Wien \ \'inst,Bannach和li \'Skiewicz(AAAI 2021)最近给出了一种用于计算马尔可夫等效类中定向无环形数量数量的多项式精确算法。在本文中,我们考虑了更一般的问题当某些边缘的方向也固定时,计算马尔可夫等效类中有向无环的数量的数量(例如,在部分可用的介入数据时会出现此设置)。从理论上讲,复杂性。相比之下,我们证明了问题在有趣的一类实例中仍然可以解决,它是通过确定``固定参数tractable''。特别是,我们的计数算法在时间范围内运行。多项式在图的大小中,其中多项式的程度\ emph {not}取决于提供的附加边数作为输入的数量。
translated by 谷歌翻译
In this paper we prove the so-called "Meek Conjecture". In particular, we show that if a DAG H is an independence map of another DAG G, then there exists a finite sequence of edge additions and covered edge reversals in G such that (1) after each edge modification H remains an independence map of G and ( 2) after all modifications G = H. As shown by Meek (1997), this result has an important consequence for Bayesian approaches to learning Bayesian networks from data: in the limit of large sample size, there exists a twophase greedy search algorithm that-when applied to a particular sparsely-connected search space-provably identifies a perfect map of the generative distribution if that perfect map is a DAG. We provide a new implementation of the search space, using equivalence classes as states, for which all operators used in the greedy search can be scored efficiently using local functions of the nodes in the domain. Finally, using both synthetic and real-world datasets, we demonstrate that the two-phase greedy approach leads to good solutions when learning with finite sample sizes.
translated by 谷歌翻译
也称为(非参数)结构方程模型(SEMS)的结构因果模型(SCM)被广泛用于因果建模目的。特别是,也称为递归SEM的无循环SCMS,形成了一个研究的SCM的良好的子类,概括了因果贝叶斯网络来允许潜在混淆。在本文中,我们调查了更多普通环境中的SCM,允许存在潜在混杂器和周期。我们展示在存在周期中,无循环SCM的许多方便的性质通常不会持有:它们并不总是有解决方案;它们并不总是诱导独特的观察,介入和反事实分布;边缘化并不总是存在,如果存在边缘模型并不总是尊重潜在的投影;他们并不总是满足马尔可夫财产;他们的图表并不总是与他们的因果语义一致。我们证明,对于SCM一般,这些属性中的每一个都在某些可加工条件下保持。我们的工作概括了SCM的结果,迄今为止仅针对某些特殊情况所知的周期。我们介绍了将循环循环设置扩展到循环设置的简单SCM的类,同时保留了许多方便的无环SCM的性能。用本文,我们的目标是为SCM提供统计因果建模的一般理论的基础。
translated by 谷歌翻译
我们建议在没有观察到的变量的情况下,提出基于订购的方法,用于学习结构方程模型(SEM)的最大祖先图(MAG),直到其Markov等效类(MEC)。文献中的现有基于订购的方法通过学习因果顺序(C-order)恢复图。我们提倡一个名为“可移动顺序”(R-rorder)的新颖订单,因为它们比结构学习的C端口有利。这是因为R-orders是适当定义的优化问题的最小化器,该问题可以准确解决(使用强化学习方法)或大约(使用爬山搜索)。此外,R-orders(与C-orders不同)在MEC中的所有图表中都是不变的,并将C-orders包括为子集。鉴于一组R-orders通常明显大于C-orders集,因此优化问题更容易找到R级而不是C级。我们评估了在现实世界和随机生成的网络上提出的方法的性能和可伸缩性。
translated by 谷歌翻译
图形上的分层聚类是数据挖掘和机器学习中的一项基本任务,并在系统发育学,社交网络分析和信息检索等领域中进行了应用。具体而言,我们考虑了由于Dasgupta引起的层次聚类的最近普及的目标函数。以前(大约)最小化此目标函数的算法需要线性时间/空间复杂性。在许多应用程序中,底层图的大小可能很大,即使使用线性时间/空间算法,也可以在计算上具有挑战性。结果,人们对设计只能使用sublinear资源执行全局计算的算法有浓厚的兴趣。这项工作的重点是在三个经过良好的sublinear计算模型下研究大量图的层次聚类,分别侧重于时空,时间和通信,作为要优化的主要资源:(1)(动态)流模型。边缘作为流,(2)查询模型表示,其中使用邻居和度查询查询图形,(3)MPC模型,其中图边缘通过通信通道连接的几台机器进行了分区。我们在上面的所有三个模型中设计用于层次聚类的sublinear算法。我们算法结果的核心是图表中的剪切方面的视图,这使我们能够使用宽松的剪刀示意图进行分层聚类,同时仅引入目标函数中的较小失真。然后,我们的主要算法贡献是如何在查询模型和MPC模型中有效地构建所需形式的切割稀疏器。我们通过建立几乎匹配的下限来补充我们的算法结果,该界限排除了在每个模型中设计更好的算法的可能性。
translated by 谷歌翻译
在原因指导的非循环图(DAG)的结构学习问题中出现的良好研究挑战是,使用观测数据,一个人只能将图形到“马尔可夫等价类”(MEC)。剩余的无向边缘必须使用干预率定向,这可以在应用中执行昂贵。因此,最小化了全面定向MEC所需的干预次数的问题已经得到了很多最近的关注,并且也是这项工作的重点。我们证明了两个主要结果。第一个是一种新的通用下限,在任何算法(无论是主动或被动)需要执行的原子干预次数,以便定向给定的MEC。我们的第二个结果表明,这一界限实际上是可以定位MEC的最小原子干预措施的两个大小的因素。我们的下限比以前已知的下限更好。我们的下限证明是基于CBSP订购的新概念,这是没有V-Surructure的DAG的拓扑排序,并满足某些特殊属性。此外,在综合图上使用模拟,并通过赋予特殊图家庭的示例,我们表明我们的界限往往明显更好。
translated by 谷歌翻译
我们考虑从数据学习树结构ising模型的问题,使得使用模型计算的后续预测是准确的。具体而言,我们的目标是学习一个模型,使得小组变量$ S $的后海报$ p(x_i | x_s)$。自推出超过50年以来,有效计算最大似然树的Chow-Liu算法一直是学习树结构图形模型的基准算法。 [BK19]示出了关于以预测的局部总变化损耗的CHOW-LIU算法的样本复杂性的界限。虽然这些结果表明,即使在恢复真正的基础图中也可以学习有用的模型是不可能的,它们的绑定取决于相互作用的最大强度,因此不会达到信息理论的最佳选择。在本文中,我们介绍了一种新的算法,仔细结合了Chow-Liu算法的元素,以便在预测的损失下有效地和最佳地学习树ising模型。我们的算法对模型拼写和对抗损坏具有鲁棒性。相比之下,我们表明庆祝的Chow-Liu算法可以任意次优。
translated by 谷歌翻译
我们研究了在个性化治疗规则下估算介入均值的调整集的选择。我们假设具有,可能是隐藏变量和由可观察变量组成的至少一个调整集的非参数因果图形模型。此外,我们假设可观察变量具有与它们相关的正成本。我们将可观察调整集的成本定义为包含它的变量成本的总和。我们认为,在此设置中,存在最小成本最佳的调整集,从而使其产生的非参数估计值与控制可观察到的可观察调整集中的最小渐近方差。我们的结果基于与原始因果图相关的特殊流量网络的构建。我们表明,可以通过计算网络上的最大流程,然后通过增强路径找到从源可到达的一组顶点来找到最低成本最佳调整集。 OptimalAdj Python包实现本文介绍的算法。
translated by 谷歌翻译
我们提出了改进的算法,并为身份测试$ n $维分布的问题提供了统计和计算下限。在身份测试问题中,我们将作为输入作为显式分发$ \ mu $,$ \ varepsilon> 0 $,并访问对隐藏分布$ \ pi $的采样甲骨文。目标是区分两个分布$ \ mu $和$ \ pi $是相同的还是至少$ \ varepsilon $ -far分开。当仅从隐藏分布$ \ pi $中访问完整样本时,众所周知,可能需要许多样本,因此以前的作品已经研究了身份测试,并额外访问了各种有条件采样牙齿。我们在这里考虑一个明显弱的条件采样甲骨文,称为坐标Oracle,并在此新模型中提供了身份测试问题的相当完整的计算和统计表征。我们证明,如果一个称为熵的分析属性为可见分布$ \ mu $保留,那么对于任何使用$ \ tilde {o}(n/\ tilde {o}),有一个有效的身份测试算法Varepsilon)$查询坐标Oracle。熵的近似张力是一种经典的工具,用于证明马尔可夫链的最佳混合时间边界用于高维分布,并且最近通过光谱独立性为许多分布族建立了最佳的混合时间。我们将算法结果与匹配的$ \ omega(n/\ varepsilon)$统计下键进行匹配的算法结果补充,以供坐标Oracle下的查询数量。我们还证明了一个计算相变:对于$ \ {+1,-1,-1 \}^n $以上的稀疏抗抗铁磁性模型,在熵失败的近似张力失败的状态下,除非RP = np,否则没有有效的身份测试算法。
translated by 谷歌翻译
结构分解方法,例如普遍的高树木分解,已成功用于解决约束满意度问题(CSP)。由于可以重复使用分解以求解具有相同约束范围的CSP,因此即使计算本身很难,将资源投资于计算良好的分解是有益的。不幸的是,即使示波器仅略有变化,当前方法也需要计算全新的分解。在本文中,我们迈出了解决CSP $ P $分解的问题的第一步,以使其成为由$ P $修改产生的新CSP $ P'$的有效分解。即使从理论上讲问题很难,我们还是提出并实施了一个有效更新GHD的框架。我们算法的实验评估强烈提出了实际适用性。
translated by 谷歌翻译
因果推断的一个共同主题是学习观察到的变量(也称为因果发现)之间的因果关系。考虑到大量候选因果图和搜索空间的组合性质,这通常是一项艰巨的任务。也许出于这个原因,到目前为止,大多数研究都集中在相对较小的因果图上,并具有多达数百个节点。但是,诸如生物学之类的领域的最新进展使生成实验数据集,并进行了数千种干预措施,然后进行了数千个变量的丰富分析,从而增加了机会和迫切需要大量因果图模型。在这里,我们介绍了因子定向无环图(F-DAG)的概念,是将搜索空间限制为非线性低级别因果相互作用模型的一种方法。将这种新颖的结构假设与最近的进步相结合,弥合因果发现与连续优化之间的差距,我们在数千个变量上实现了因果发现。此外,作为统计噪声对此估计程序的影响的模型,我们根据随机图研究了F-DAG骨架的边缘扰动模型,并量化了此类扰动对F-DAG等级的影响。该理论分析表明,一组候选F-DAG比整个DAG空间小得多,因此在很难评估基础骨架的高维度中更统计学上的稳定性。我们提出了因子图(DCD-FG)的可区分因果发现,这是对高维介入数据的F-DAG约束因果发现的可扩展实现。 DCD-FG使用高斯非线性低级结构方程模型,并且在模拟中的最新方法以及最新的大型单细胞RNA测序数据集中,与最新方法相比显示出显着改善遗传干预措施。
translated by 谷歌翻译