我们与指定为领导者的球员之一和其他球员读为追随者的球员学习多人一般汇总马尔可夫游戏。特别是,我们专注于追随者是近视的游戏,即,他们的目标是最大限度地提高他们的瞬间奖励。对于这样的游戏,我们的目标是找到一个Stackelberg-Nash均衡(SNE),这是一个策略对$(\ pi ^ *,\ nu ^ *)$,这样(i)$ \ pi ^ * $是追随者始终发挥最佳回应的领导者的最佳政策,(ii)$ \ nu ^ * $是追随者的最佳反应政策,这是由$ \ pi ^ *引起的追随者游戏的纳什均衡$。我们开发了用于在线和离线设置中的SNE解决SNE的采样高效的强化学习(RL)算法。我们的算法是最小二乘值迭代的乐观和悲观的变体,并且它们很容易能够在大状态空间的设置中结合函数近似工具。此外,对于线性函数近似的情况,我们证明我们的算法分别在线和离线设置下实现了Sublinear遗憾和次优。据我们所知,我们建立了第一种可用于解决近代Markov游戏的SNES的第一款可透明的RL算法。
translated by 谷歌翻译
We study episodic two-player zero-sum Markov games (MGs) in the offline setting, where the goal is to find an approximate Nash equilibrium (NE) policy pair based on a dataset collected a priori. When the dataset does not have uniform coverage over all policy pairs, finding an approximate NE involves challenges in three aspects: (i) distributional shift between the behavior policy and the optimal policy, (ii) function approximation to handle large state space, and (iii) minimax optimization for equilibrium solving. We propose a pessimism-based algorithm, dubbed as pessimistic minimax value iteration (PMVI), which overcomes the distributional shift by constructing pessimistic estimates of the value functions for both players and outputs a policy pair by solving NEs based on the two value functions. Furthermore, we establish a data-dependent upper bound on the suboptimality which recovers a sublinear rate without the assumption on uniform coverage of the dataset. We also prove an information-theoretical lower bound, which suggests that the data-dependent term in the upper bound is intrinsic. Our theoretical results also highlight a notion of "relative uncertainty", which characterizes the necessary and sufficient condition for achieving sample efficiency in offline MGs. To the best of our knowledge, we provide the first nearly minimax optimal result for offline MGs with function approximation.
translated by 谷歌翻译
我们考虑在具有非线性函数近似的两名玩家零和马尔可夫游戏中学习NASH平衡,其中动作值函数通过繁殖内核Hilbert Space(RKHS)中的函数近似。关键挑战是如何在高维函数空间中进行探索。我们提出了一种新颖的在线学习算法,以最大程度地减少双重性差距来找到NASH平衡。我们算法的核心是基于不确定性的乐观原理得出的上和下置信度界限。我们证明,在非常温和的假设上,我们的算法能够获得$ O(\ sqrt {t})$遗憾,并在对奖励功能和马尔可夫游戏的基本动态下进行多项式计算复杂性。我们还提出了我们的算法的几个扩展,包括具有伯恩斯坦型奖励的算法,可以实现更严格的遗憾,以及用于模型错误指定的另一种算法,可以应用于神经功能近似。
translated by 谷歌翻译
We consider a multi-agent episodic MDP setup where an agent (leader) takes action at each step of the episode followed by another agent (follower). The state evolution and rewards depend on the joint action pair of the leader and the follower. Such type of interactions can find applications in many domains such as smart grids, mechanism design, security, and policymaking. We are interested in how to learn policies for both the players with provable performance guarantee under a bandit feedback setting. We focus on a setup where both the leader and followers are {\em non-myopic}, i.e., they both seek to maximize their rewards over the entire episode and consider a linear MDP which can model continuous state-space which is very common in many RL applications. We propose a {\em model-free} RL algorithm and show that $\tilde{\mathcal{O}}(\sqrt{d^3H^3T})$ regret bounds can be achieved for both the leader and the follower, where $d$ is the dimension of the feature mapping, $H$ is the length of the episode, and $T$ is the total number of steps under the bandit feedback information setup. Thus, our result holds even when the number of states becomes infinite. The algorithm relies on {\em novel} adaptation of the LSVI-UCB algorithm. Specifically, we replace the standard greedy policy (as the best response) with the soft-max policy for both the leader and the follower. This turns out to be key in establishing uniform concentration bound for the value functions. To the best of our knowledge, this is the first sub-linear regret bound guarantee for the Markov games with non-myopic followers with function approximation.
translated by 谷歌翻译
尽管固定环境中的单一机构政策优化最近在增强学习社区中引起了很多研究的关注,但是当在潜在竞争性的环境中有多个代理商在玩耍时,从理论上讲,少得多。我们通过提出和分析具有结构化但未知过渡的零和Markov游戏的新的虚拟游戏策略优化算法来向前迈进。我们考虑两类的过渡结构:分类的独立过渡和单个控制器过渡。对于这两种情况,我们都证明了紧密的$ \ widetilde {\ Mathcal {o}}(\ sqrt {k})$遗憾的范围在$ k $ eviepodes之后,在两种代理竞争的游戏场景中。每个代理人的遗憾是针对潜在的对抗对手的衡量,他们在观察完整的政策序列后可以在事后选择一个最佳政策。我们的算法在非平稳环境中同时进行政策优化的范围下,具有上置信度结合(UCB)的乐观和虚拟游戏的结合。当两个玩家都采用所提出的算法时,他们的总体最优差距为$ \ widetilde {\ Mathcal {o}}(\ sqrt {k})$。
translated by 谷歌翻译
经济学和政策等现实世界应用程序往往涉及解决多智能运动游戏与两个独特的特点:(1)代理人本质上是不对称的,并分成领导和追随者; (2)代理商有不同的奖励功能,因此游戏是普通的。该领域的大多数现有结果侧重于对称解决方案概念(例如纳什均衡)或零和游戏。它仍然开放了如何学习Stackelberg均衡 - 从嘈杂的样本有效地纳入均衡的不对称模拟 - 纳入均衡。本文启动了对Birtit反馈设置中Stackelberg均衡的样本高效学习的理论研究,我们只观察奖励的噪音。我们考虑三个代表双人普通和游戏:强盗游戏,强盗加固学习(Bandit-RL)游戏和线性匪徒游戏。在所有这些游戏中,我们使用有义的许多噪声样本来确定Stackelberg均衡和其估计版本的确切值之间的基本差距,无论算法如何,都无法封闭信息。然后,我们在对上面识别的差距最佳的基础上的数据高效学习的样本高效学习的敏锐积极结果,在依赖于依赖性的差距,误差容限和动作空间的大小,匹配下限。总体而言,我们的结果在嘈杂的强盗反馈下学习Stackelberg均衡的独特挑战,我们希望能够在未来的研究中阐明这一主题。
translated by 谷歌翻译
我们研究了马尔可夫潜在游戏(MPG)中多机构增强学习(RL)问题的策略梯度方法的全球非反应收敛属性。要学习MPG的NASH平衡,在该MPG中,状态空间的大小和/或玩家数量可能非常大,我们建议使用TANDEM所有玩家运行的新的独立政策梯度算法。当梯度评估中没有不确定性时,我们表明我们的算法找到了$ \ epsilon $ -NASH平衡,$ o(1/\ epsilon^2)$迭代复杂性并不明确取决于状态空间大小。如果没有确切的梯度,我们建立$ O(1/\ epsilon^5)$样品复杂度在潜在的无限大型状态空间中,用于利用函数近似的基于样本的算法。此外,我们确定了一类独立的政策梯度算法,这些算法都可以融合零和马尔可夫游戏和马尔可夫合作游戏,并与玩家不喜欢玩的游戏类型。最后,我们提供了计算实验来证实理论发展的优点和有效性。
translated by 谷歌翻译
鉴于它在提取功能表示方面的力量,对比性的自我监督学习已成功整合到(深)强化学习(RL)的实践中,从而在各种应用程序中提供了有效的政策学习。尽管取得了巨大的经验成功,但对RL的对比学习的理解仍然难以捉摸。为了缩小这样的差距,我们研究了Markov决策过程(MDP)和Markov Games(MGS)的对比度学习如何赋予RL的能力。对于这两种模型,我们建议通过最大程度地减少对比度损失来提取低级别模型的正确特征表示。此外,在在线环境下,我们提出了新颖的上限置信界(UCB)型算法,该算法将这种对比度损失与MDP或MGS的在线RL算法结合在一起。从理论上讲,我们进一步证明了我们的算法恢复了真实表示形式,并同时在学习MDP和MGS中学习最佳策略和NASH平衡方面同时实现了样本效率。我们还提供实证研究,以证明基于UCB的RL的对比度学习方法的功效。据我们所知,我们提供了第一种可证明有效的在线RL算法,该算法结合了代表学习的对比学习。我们的代码可从https://github.com/baichenjia/contrastive-ucb获得。
translated by 谷歌翻译
本文涉及两人零和马尔可夫游戏 - 可以说是多代理增强学习中最基本的设置 - 目的是学习纳什平衡(NE)的样本 - 优越。所有先前的结果至少都有两个障碍中的至少一个:多种试剂的诅咒和长层的障碍,无论使用采样方案如何。假设访问灵活的采样机制:生成模型,我们朝着解决此问题迈出了一步。专注于非平稳的有限 - 霍森马尔可夫游戏,我们开发了一种学习算法$ \ mathsf {nash} \ text { - } \ mathsf {q} \ text { - } \ text { - } \ mathsf {ftrl} $ and deflavery and Adaptive采样方案对抗性学习中的乐观原则(尤其是跟随规范化领导者(FTRL)方法),具有精致的奖励术语设计,可确保在FTRL动力学下进行某些可分解性。我们的算法使用$$ \ widetilde {o} \ bigg(\ frac {h^4 s(a+b)} {\ varepsilon^2} \ bigg)$ bigg)$ samples $ \ varepsilon $ -Approximate Markov ne策略其中$ s $是状态的数量,$ h $是地平线,而$ a $ a $ a $ a $ a $(resp。〜 $ b $)表示max-player的动作数(分别〜min-player)。从最小的意义上讲,这几乎无法得到解决。在此过程中,我们得出了一个精致的遗憾,以赋予FTRL的遗憾,从而明确说明了差异数量的作用,这可能具有独立的利益。
translated by 谷歌翻译
我们研究了具有线性函数近似增强学习中的随机最短路径(SSP)问题,其中过渡内核表示为未知模型的线性混合物。我们将此类别的SSP问题称为线性混合物SSP。我们提出了一种具有Hoeffding-type置信度的新型算法,用于学习线性混合物SSP,可以获得$ \ tilde {\ Mathcal {o}}}}(d B _ {\ star}^{1.5} \ sqrt {k/c_ {k/c_ {k/c_ {k/c_ { \ min}})$遗憾。这里$ k $是情节的数量,$ d $是混合模型中功能映射的维度,$ b _ {\ star} $限制了最佳策略的预期累积成本,$ c _ {\ min}>> 0 $是成本函数的下限。当$ c _ {\ min} = 0 $和$ \ tilde {\ mathcal {o}}}(k^{2/3})$遗憾时,我们的算法也适用于情况。据我们所知,这是第一个具有sublrinear遗憾保证线性混合物SSP的算法。此外,我们设计了精致的伯恩斯坦型信心集并提出了改进的算法,该算法可实现$ \ tilde {\ Mathcal {o}}}(d b _ {\ star} \ sqrt {k/c/c/c {k/c _ {\ min}}) $遗憾。为了补充遗憾的上限,我们还证明了$ \ omega(db _ {\ star} \ sqrt {k})$的下限。因此,我们的改进算法将下限匹配到$ 1/\ sqrt {c _ {\ min}} $ factor和poly-logarithmic因素,从而实现了近乎最佳的遗憾保证。
translated by 谷歌翻译
We study sample efficient reinforcement learning (RL) under the general framework of interactive decision making, which includes Markov decision process (MDP), partially observable Markov decision process (POMDP), and predictive state representation (PSR) as special cases. Toward finding the minimum assumption that empowers sample efficient learning, we propose a novel complexity measure, generalized eluder coefficient (GEC), which characterizes the fundamental tradeoff between exploration and exploitation in online interactive decision making. In specific, GEC captures the hardness of exploration by comparing the error of predicting the performance of the updated policy with the in-sample training error evaluated on the historical data. We show that RL problems with low GEC form a remarkably rich class, which subsumes low Bellman eluder dimension problems, bilinear class, low witness rank problems, PO-bilinear class, and generalized regular PSR, where generalized regular PSR, a new tractable PSR class identified by us, includes nearly all known tractable POMDPs. Furthermore, in terms of algorithm design, we propose a generic posterior sampling algorithm, which can be implemented in both model-free and model-based fashion, under both fully observable and partially observable settings. The proposed algorithm modifies the standard posterior sampling algorithm in two aspects: (i) we use an optimistic prior distribution that biases towards hypotheses with higher values and (ii) a loglikelihood function is set to be the empirical loss evaluated on the historical data, where the choice of loss function supports both model-free and model-based learning. We prove that the proposed algorithm is sample efficient by establishing a sublinear regret upper bound in terms of GEC. In summary, we provide a new and unified understanding of both fully observable and partially observable RL.
translated by 谷歌翻译
We study time-inhomogeneous episodic reinforcement learning (RL) under general function approximation and sparse rewards. We design a new algorithm, Variance-weighted Optimistic $Q$-Learning (VO$Q$L), based on $Q$-learning and bound its regret assuming completeness and bounded Eluder dimension for the regression function class. As a special case, VO$Q$L achieves $\tilde{O}(d\sqrt{HT}+d^6H^{5})$ regret over $T$ episodes for a horizon $H$ MDP under ($d$-dimensional) linear function approximation, which is asymptotically optimal. Our algorithm incorporates weighted regression-based upper and lower bounds on the optimal value function to obtain this improved regret. The algorithm is computationally efficient given a regression oracle over the function class, making this the first computationally tractable and statistically optimal approach for linear MDPs.
translated by 谷歌翻译
本文通过离线数据在两人零和马尔可夫游戏中学习NASH Equilibria的进展。具体而言,考虑使用$ S $州的$ \ gamma $ discousped Infinite-Horizo​​n Markov游戏,其中Max-player具有$ $ ACTIVE,而Min-player具有$ B $ Actions。我们提出了一种基于悲观模型的算法,具有伯恩斯坦风格的较低置信界(称为VI-LCB游戏),事实证明,该算法可以找到$ \ varepsilon $ - approximate-approximate nash平衡,带有样品复杂性,不大于$ \ frac {c_ {c_ {c_ {c_ { \ Mathsf {剪切}}}^{\ star} s(a+b)} {(1- \ gamma)^{3} \ varepsilon^{2}} $(最多到某个log factor)。在这里,$ c _ {\ mathsf {剪切}}}^{\ star} $是一些单方面剪接的浓缩系数,反映了可用数据的覆盖范围和分配变化(vis- \`a-vis目标数据),而目标是目标精度$ \ varepsilon $可以是$ \ big(0,\ frac {1} {1- \ gamma} \ big] $的任何值。我们的样本复杂性绑定了先前的艺术,以$ \ min \ {a, b \} $,实现整个$ \ varepsilon $ range的最小值最佳性。我们结果的一个吸引力的功能在于算法简单性,这揭示了降低方差降低和样本拆分的不必要性。
translated by 谷歌翻译
Modern Reinforcement Learning (RL) is commonly applied to practical problems with an enormous number of states, where function approximation must be deployed to approximate either the value function or the policy. The introduction of function approximation raises a fundamental set of challenges involving computational and statistical efficiency, especially given the need to manage the exploration/exploitation tradeoff. As a result, a core RL question remains open: how can we design provably efficient RL algorithms that incorporate function approximation? This question persists even in a basic setting with linear dynamics and linear rewards, for which only linear function approximation is needed.This paper presents the first provable RL algorithm with both polynomial runtime and polynomial sample complexity in this linear setting, without requiring a "simulator" or additional assumptions. Concretely, we prove that an optimistic modification of Least-Squares Value Iteration (LSVI)-a classical algorithm frequently studied in the linear setting-achieves O( √ d 3 H 3 T ) regret, where d is the ambient dimension of feature space, H is the length of each episode, and T is the total number of steps. Importantly, such regret is independent of the number of states and actions.
translated by 谷歌翻译
We study reinforcement learning (RL) with linear function approximation. For episodic time-inhomogeneous linear Markov decision processes (linear MDPs) whose transition dynamic can be parameterized as a linear function of a given feature mapping, we propose the first computationally efficient algorithm that achieves the nearly minimax optimal regret $\tilde O(d\sqrt{H^3K})$, where $d$ is the dimension of the feature mapping, $H$ is the planning horizon, and $K$ is the number of episodes. Our algorithm is based on a weighted linear regression scheme with a carefully designed weight, which depends on a new variance estimator that (1) directly estimates the variance of the \emph{optimal} value function, (2) monotonically decreases with respect to the number of episodes to ensure a better estimation accuracy, and (3) uses a rare-switching policy to update the value function estimator to control the complexity of the estimated value function class. Our work provides a complete answer to optimal RL with linear MDPs, and the developed algorithm and theoretical tools may be of independent interest.
translated by 谷歌翻译
我们研究数据集假设允许求解离线双人零和Markov游戏。在与离线单代理马尔可夫决策过程的鲜明对比中,我们表明单一策略浓度假设不足以在离线双球零和马尔可夫游戏中学习纳什均衡(NE)战略。另一方面,我们提出了一个名为单侧浓度的新假设,并设计了一种悲观型算法,可在此假设下提供有效的。此外,我们表明单方面浓度假设是学习网元策略所必需的。此外,我们的算法可以实现Minimax样本复杂性,而对于两个广泛研究的设置,可以进行任何修改:数据集具有均匀浓度假设和基于转向的马尔可夫游戏。我们的工作是了解离线多智能经纪增强学习的重要初步步骤。
translated by 谷歌翻译
随机游戏的学习可以说是多功能钢筋学习(MARL)中最标准和最基本的环境。在本文中,我们考虑在非渐近制度的随机游戏中分散的Marl。特别是,我们在大量的一般总和随机游戏(SGS)中建立了完全分散的Q学习算法的有限样本复杂性 - 弱循环SGS,包括对所有代理商的普通合作MARL设置具有相同的奖励(马尔可夫团队问题是一个特例。我们专注于实用的同时具有挑战性地设置完全分散的Marl,既不奖励也没有其他药剂的作用,每个试剂都可以观察到。事实上,每个特工都完全忘记了其他决策者的存在。表格和线性函数近似情况都已考虑。在表格设置中,我们分析了分散的Q学习算法的样本复杂性,以收敛到马尔可夫完美均衡(NASH均衡)。利用线性函数近似,结果用于收敛到线性近似平衡 - 我们提出的均衡的新概念 - 这描述了每个代理的策略是线性空间内的最佳回复(到其他代理)。还提供了数值实验,用于展示结果。
translated by 谷歌翻译
尽管基于模型的增强学习(RL)方法被认为是更具样本的高效,但现有算法通常依赖于复杂的规划算法与模型学习过程紧密粘合。因此,学习模型可能缺乏与更专业规划者重新使用的能力。在本文中,我们解决了这个问题,并提供了在没有奖励信号的指导的情况下有效地学习RL模型的方法。特别是,我们采取了一个插件求解器方法,我们专注于在探索阶段学习模型,并要求在学习模型上的\ emph {任何规划算法}可以给出近最佳的政策。具体而言,我们专注于线性混合MDP设置,其中概率转换矩阵是一组现有模型的(未知)凸面组合。我们表明,通过建立新的探索算法,即插即用通过\ tilde {o}来学习模型(d ^ 2h ^ 3 / epsilon ^ 2)$与环境交互,\ emph {任何} $ \ epsilon $ -optimal Planner在模型上给出$ O(\ epsilon)$ - 原始模型上的最佳政策。此示例复杂性与非插入方法的下限与下限匹配,并且是\ EMPH {统计上最佳}。我们通过利用使用伯尔斯坦不等式和指定的线性混合MDP的属性来实现仔细的最大总差异来实现这一结果。
translated by 谷歌翻译
我们研究了基于模型的无奖励加强学习,具有ePiSodic Markov决策过程的线性函数近似(MDP)。在此设置中,代理在两个阶段工作。在勘探阶段,代理商与环境相互作用并在没有奖励的情况下收集样品。在规划阶段,代理商给出了特定的奖励功能,并使用从勘探阶段收集的样品来学习良好的政策。我们提出了一种新的可直接有效的算法,称为UCRL-RFE在线性混合MDP假设,其中MDP的转换概率内核可以通过线性函数参数化,在状态,动作和下一个状态的三联体上定义的某些特征映射上参数化。我们展示了获得$ \ epsilon $-Optimal策略进行任意奖励函数,Ucrl-RFE需要以大多数$ \ tilde {\ mathcal {o}}来进行采样(h ^ 5d ^ 2 \ epsilon ^ { - 2})勘探阶段期间的$派对。在这里,$ H $是集的长度,$ d $是特征映射的尺寸。我们还使用Bernstein型奖金提出了一种UCRL-RFE的变种,并表明它需要在大多数$ \ TINDE {\ MATHCAL {o}}(H ^ 4D(H + D)\ epsilon ^ { - 2})进行样本$达到$ \ epsilon $ -optimal政策。通过构建特殊类的线性混合MDPS,我们还证明了对于任何无奖励算法,它需要至少为$ \ TINDE \ OMEGA(H ^ 2d \ epsilon ^ { - 2})$剧集来获取$ \ epsilon $ -optimal政策。我们的上限与依赖于$ \ epsilon $的依赖性和$ d $ if $ h \ ge d $。
translated by 谷歌翻译
我们研究了一个名为“战略MDP”的新型模型下的离线增强学习,该模型表征了本金和一系列与私有类型的近视药物之间的战略相互作用。由于双层结构和私人类型,战略MDP涉及主体与代理之间的信息不对称。我们专注于离线RL问题,其目标是基于由历史互动组成的预采用数据集学习委托人的最佳政策。未观察到的私人类型混淆了这样的数据集,因为它们会影响委托人收到的奖励和观察结果。我们提出了一种新颖的算法,具有算法工具(计划)的悲观政策学习,该算法利用仪器变量回归的思想和悲观主义原则在一般功能近似的背景下学习近乎最佳的原理政策。我们的算法是基于批判性观察,即主体的行为是有效的工具变量。特别是,在离线数据集中的部分覆盖范围假设下,我们证明计划输出$ 1 / \ sqrt {k} $ - 最佳策略,$ k $是收集的轨迹数量。我们进一步将框架应用于一些特殊的战略MDP案例,包括战略回归,战略强盗和推荐系统中的不合规性。
translated by 谷歌翻译