人道主义组织必须具有快速可靠的数据来应对灾害。在现实世界灾害中难以实施深度学习方法,因为在活动结束后很快收集损坏情况(培训数据)的地面真理数据可能会挑战。在这项工作中,通过成功地申请建立具有非常有限的标记数据和大量未标记数据的损害评估,在这项工作中展示了最近的自定节奏正面未标记的学习(PU)。将自欺欺人学习与来自2011年Tohoku地震,2018 Palu海啸和2018年飓风迈克尔收集的不同数据集进行了监督的基线和传统浦项学习。通过仅利用标记的损坏样本的一部分,我们展示了如何用自我PU技术训练的模型可以实现与监督学习的相当性能。
translated by 谷歌翻译
在灾难后评估领域,为了及时准确的救援和本地化,人们需要知道损坏的建筑物的位置。在深度学习中,一些学者提出了通过遥感图像进行自动且高度准确的建筑损害评估的方法,事实证明,这些方法比域专家评估更有效。但是,由于缺乏大量标记的数据,这些任务可能因能够进行准确的评估而遭受损失,因为深度学习模型的效率高度依赖于标记的数据。尽管现有的半监督和无监督研究在这一领域取得了突破,但它们都没有完全解决这个问题。因此,我们建议采用一种自制的比较学习方法来解决任务,而无需标记数据。我们构建了一个新颖的非对称双网络架构,并在XBD数据集上测试了其性能。我们模型的实验结果表明,与基线和常用方法相比,改善了。我们还展示了自我监督方法建立损害识别意识的潜力。
translated by 谷歌翻译
Semi-supervised learning (SSL) has made significant strides in the field of remote sensing. Finding a large number of labeled datasets for SSL methods is uncommon, and manually labeling datasets is expensive and time-consuming. Furthermore, accurately identifying remote sensing satellite images is more complicated than it is for conventional images. Class-imbalanced datasets are another prevalent phenomenon, and models trained on these become biased towards the majority classes. This becomes a critical issue with an SSL model's subpar performance. We aim to address the issue of labeling unlabeled data and also solve the model bias problem due to imbalanced datasets while achieving better accuracy. To accomplish this, we create "artificial" labels and train a model to have reasonable accuracy. We iteratively redistribute the classes through resampling using a distribution alignment technique. We use a variety of class imbalanced satellite image datasets: EuroSAT, UCM, and WHU-RS19. On UCM balanced dataset, our method outperforms previous methods MSMatch and FixMatch by 1.21% and 0.6%, respectively. For imbalanced EuroSAT, our method outperforms MSMatch and FixMatch by 1.08% and 1%, respectively. Our approach significantly lessens the requirement for labeled data, consistently outperforms alternative approaches, and resolves the issue of model bias caused by class imbalance in datasets.
translated by 谷歌翻译
本文介绍了Dahitra,这是一种具有分层变压器的新型深度学习模型,可在飓风后根据卫星图像对建筑物的损害进行分类。自动化的建筑损害评估为决策和资源分配提供了关键信息,以快速应急响应。卫星图像提供了实时,高覆盖的信息,并提供了向大规模污点后建筑物损失评估提供信息的机会。此外,深入学习方法已证明在对建筑物的损害进行分类方面有希望。在这项工作中,提出了一个基于变压器的新型网络来评估建筑物的损失。该网络利用多个分辨率的层次空间特征,并在将变压器编码器应用于空间特征后捕获特征域的时间差异。当对大规模灾难损坏数据集(XBD)进行测试以构建本地化和损坏分类以及在Levir-CD数据集上进行更改检测任务时,该网络将实现最先进的绩效。此外,我们引入了一个新的高分辨率卫星图像数据集,IDA-BD(与2021年路易斯安那州的2021年飓风IDA有关,以便域名适应以进一步评估该模型的能力,以适用于新损坏的区域。域的适应结果表明,所提出的模型可以适应一个新事件,只有有限的微调。因此,所提出的模型通过更好的性能和域的适应来推进艺术的当前状态。此外,IDA-BD也提供了A高分辨率注释的数据集用于该领域的未来研究。
translated by 谷歌翻译
需要在自然灾害后损害评估来分配援助和力量从最佳地处理损坏。这一过程涉及为兴趣区域,建筑物的本地化以及大自然或城市因素对建筑物造成的损害量的分类来获取卫星图像。在自然灾害的情况下,这意味着加工许多平方公里的区域,以判断特定建筑是否遭受破坏性因素。在这项工作中,我们开发了灾难前后的同一区域卫星图像的自动比较的计算方法,并在建筑物中分类不同损坏程度。我们的解决方案是基于暹罗与编码器解码器架构的神经网络。我们包括广泛的消融研究,并比较不同的编码器,解码器,损失函数,增强以及组合两个图像的几种方法。该解决方案实现了计算机愿景中的最佳结果之一,以建立损害评估竞争。
translated by 谷歌翻译
组织病理学图像包含丰富的表型信息和病理模式,这是疾病诊断的黄金标准,对于预测患者预后和治疗结果至关重要。近年来,在临床实践中迫切需要针对组织病理学图像的计算机自动化分析技术,而卷积神经网络代表的深度学习方法已逐渐成为数字病理领域的主流。但是,在该领域获得大量细粒的注释数据是一项非常昂贵且艰巨的任务,这阻碍了基于大量注释数据的传统监督算法的进一步开发。最新的研究开始从传统的监督范式中解放出来,最有代表性的研究是基于弱注释,基于有限的注释的半监督学习范式以及基于自我监督的学习范式的弱监督学习范式的研究图像表示学习。这些新方法引发了针对注释效率的新自动病理图像诊断和分析。通过对130篇论文的调查,我们对从技术和方法论的角度来看,对计算病理学领域中有关弱监督学习,半监督学习以及自我监督学习的最新研究进行了全面的系统综述。最后,我们提出了这些技术的关键挑战和未来趋势。
translated by 谷歌翻译
灾难事件后立即可用的高分辨率卫星图像对于响应计划至关重要,因为它促进了对临界基础设施状态的广泛情境意识,例如建立损坏,洪水和障碍物来访问路线。此规模的损坏映射将需要数百人的专家小时。然而,众包的组合和深度学习的最新进步将实时降低几个小时需要的努力。要求志愿者放置点标记,而不是实际受损区域的形状,显着降低灾难期间响应所需的分析时间。但是,不同的志愿者可能在标记中不一致。这项工作提出了用于汇总可能不一致的损伤标记以培训神经网络损伤探测器的方法。
translated by 谷歌翻译
这里介绍了人工智能研究所(IARAI)组织的2022年Landslide4sense(L4S)竞赛的科学结果。竞争的目的是根据全球收集的卫星图像的大规模多个来源自动检测滑坡。 2022 L4S旨在促进有关使用卫星图像的语义分割任务的深度学习模型(DL)模型最新发展的跨学科研究。在过去的几年中,由于卷积神经网络(CNN)的发展,基于DL的模型已经达到了对图像解释的期望。本文的主要目的是介绍本次比赛中介绍的细节和表现最佳的算法。获胜的解决方案详细介绍了Swin Transformer,Segformer和U-NET等最先进的模型。还考虑了先进的机器学习技术和诸如硬采矿,自我培训和混合数据增强之类的策略。此外,我们描述了L4S基准数据集,以促进进一步的比较,并在线报告准确性评估的结果。可以在\ textIt {未来开发排行榜上访问数据,以供将来评估,\ url {https://www.iarai.ac.ac.at/landslide4sense/challenge/},并邀请研究人员提交更多预测结果,评估准确性在他们的方法中,将它们与其他用户的方法进行比较,理想情况下,改善了本文报告的滑坡检测结果。
translated by 谷歌翻译
Positive-Unlabeled (PU) learning aims to learn a model with rare positive samples and abundant unlabeled samples. Compared with classical binary classification, the task of PU learning is much more challenging due to the existence of many incompletely-annotated data instances. Since only part of the most confident positive samples are available and evidence is not enough to categorize the rest samples, many of these unlabeled data may also be the positive samples. Research on this topic is particularly useful and essential to many real-world tasks which demand very expensive labelling cost. For example, the recognition tasks in disease diagnosis, recommendation system and satellite image recognition may only have few positive samples that can be annotated by the experts. These methods mainly omit the intrinsic hardness of some unlabeled data, which can result in sub-optimal performance as a consequence of fitting the easy noisy data and not sufficiently utilizing the hard data. In this paper, we focus on improving the commonly-used nnPU with a novel training pipeline. We highlight the intrinsic difference of hardness of samples in the dataset and the proper learning strategies for easy and hard data. By considering this fact, we propose first splitting the unlabeled dataset with an early-stop strategy. The samples that have inconsistent predictions between the temporary and base model are considered as hard samples. Then the model utilizes a noise-tolerant Jensen-Shannon divergence loss for easy data; and a dual-source consistency regularization for hard data which includes a cross-consistency between student and base model for low-level features and self-consistency for high-level features and predictions, respectively.
translated by 谷歌翻译
古代定居点的检测是景观考古学的关键。传统上,通过行人调查确定了定居点,因为研究人员在物理上穿过景观和记录的结算位置。最近,古老遗骸的手动识别和标签在卫星图像上增加了考古数据收集的规模,但该过程仍然耗时耗时和艰巨。自我监督学习的发展(例如,对比学习)在使用未标记的卫星和历史空中图像定位考古地点提供可扩展的学习方案。然而,考古站点仅以整个景观的一部分出现,而现代对比监督的学习方法通​​常会在高度平衡的数据集中产生较差的性能,例如使用卫星图像在大面积上识别稀疏局部古城区化。在这项工作中,我们提出了一个解决这个长尾问题的框架。与通常分别处理标记和未标记数据的现有对比学习方法相反,所提出的方法在半监督环境下改革学习范例,以充分利用宝贵的注释数据(我们的设置中<7%)。具体地,通过在未unnotated图像斑块之间的相似性和注释的锚图像之间的相似性来形成数据的高度不平衡性质,以形成伪负对的先验知识。在这项研究中,我们使用了95,358个未标记的图像和5,830个标记的图像来解决从长尾卫星图像数据集检测古建筑的问题。从结果中,我们的半监督对比学习模式实现了79.0%的有前途的测试均衡准确性,而最先进的方法的改善是3.8%。
translated by 谷歌翻译
在深度学习研究中,自学学习(SSL)引起了极大的关注,引起了计算机视觉和遥感社区的兴趣。尽管计算机视觉取得了很大的成功,但SSL在地球观测领域的大部分潜力仍然锁定。在本文中,我们对在遥感的背景下为计算机视觉的SSL概念和最新发展提供了介绍,并回顾了SSL中的概念和最新发展。此外,我们在流行的遥感数据集上提供了现代SSL算法的初步基准,从而验证了SSL在遥感中的潜力,并提供了有关数据增强的扩展研究。最后,我们确定了SSL未来研究的有希望的方向的地球观察(SSL4EO),以铺平了两个领域的富有成效的相互作用。
translated by 谷歌翻译
我们对最近的自我和半监督ML技术进行严格的评估,从而利用未标记的数据来改善下游任务绩效,以河床分割的三个遥感任务,陆地覆盖映射和洪水映射。这些方法对于遥感任务特别有价值,因为易于访问未标记的图像,并获得地面真理标签通常可以昂贵。当未标记的图像(标记数据集之外)提供培训时,我们量化性能改进可以对这些遥感分割任务进行期望。我们还设计实验以测试这些技术的有效性,当测试集相对于训练和验证集具有域移位时。
translated by 谷歌翻译
半监督学习方法已成为对打击获得大量注释数据的挑战的活跃研究领域。为了提高半监督学习方法表现的目标,我们提出了一种新颖的框架,Hiematch,一种半监督方法,利用分层信息来降低标签成本并表现以及vanilla半监督学习方法。分层信息通常是具有细粒标签的粗标签(例如,啄木鸟)的粗标签(例如,啄木鸟)的现有知识(例如,柔软的啄木鸟或金朝啄木鸟)。但是,尚未探讨使用使用粗类标签来改进半监督技术的监督。在没有细粒度的标签的情况下,Himatch利用标签层次结构,并使用粗级标签作为弱监控信号。此外,Himatch是一种改进任何半熟的学习框架的通用方法,我们使用我们的结果在最近的最先进的技术Mixmatch和Fixmatch上展示了这一点。我们评估了在两个基准数据集,即CiFar-100和Nabirds上的Himatch疗效。与MixMatch相比,HOMACHACT可以在CIFAR-100上减少50%的粒度标签50%的用量,仅在前1个精度的边缘下降0.59%。代码:https://github.com/07agarg/hiermatch.
translated by 谷歌翻译
使用卫星图像的建筑物分类对于诸如损害评估,资源分配和人口估算的若干应用而言变得越来越重要。在这项工作中,我们专注于建筑物损伤评估(BDA)和住宅和非住宅建筑的建筑物类型分类(BTC)。我们建议仅依赖于RGB卫星图像并遵循基于2级的深度学习的方法,其中使用语义分割模型提取建筑物的足迹,然后进行裁剪图像的分类。由于缺乏住宅/非住宅建筑物分类的适当数据集,我们介绍了一个新的高分辨率卫星图像数据集。我们进行广泛的实验,选择最佳的超参数,模型架构和培训范式,我们提出了一种新的转移基于学习的方法,以优于经典方法。最后,我们验证了两种应用中提出的方法,呈现出卓越的准确性和F1分数指标。
translated by 谷歌翻译
积极的未标记(PU)学习旨在仅从积极和未标记的培训数据中学习二进制分类器。最近的方法通过发展无偏的损失功能通过对成本敏感的学习解决了这一问题,后来通过迭代伪标记解决方案改善了其性能。但是,这样的两步程序容易受到错误估计的伪标签的影响,因为在以后的错误预测训练新模型时,在以后的迭代中传播了错误。为了防止这种确认偏见,我们提出PUUPL是PU学习的新型损失不足的训练程序,该程序将认知不确定性纳入伪标签选择中。通过使用基于低确定性预测的神经网络的合奏并分配伪标记,我们表明PUUPL提高了伪标签的可靠性,提高了我们方法的预测性能,并导致了新的最先进的结果在自我训练中进行PU学习。通过广泛的实验,我们显示了方法对不同数据集,模式和学习任务的有效性,以及改进的校准,对先前拼写错误的稳健性,偏见的正数据和不平衡数据集。
translated by 谷歌翻译
迄今为止,最强大的半监督对象检测器(SS-OD)基于伪盒,该盒子需要一系列带有微调超参数的后处理。在这项工作中,我们建议用稀疏的伪盒子以伪造的伪标签形式取代稀疏的伪盒。与伪盒相比,我们的密集伪标签(DPL)不涉及任何后处理方法,因此保留了更丰富的信息。我们还引入了一种区域选择技术,以突出关键信息,同时抑制密集标签所携带的噪声。我们将利用DPL作为密集老师的拟议的SS-OD算法命名。在可可和VOC上,密集的老师在各种环境下与基于伪盒的方法相比表现出卓越的表现。
translated by 谷歌翻译
微创手术中的手术工具检测是计算机辅助干预措施的重要组成部分。当前的方法主要是基于有监督的方法,这些方法需要大量的完全标记的数据来培训监督模型,并且由于阶级不平衡问题而患有伪标签偏见。但是,带有边界框注释的大图像数据集通常几乎无法使用。半监督学习(SSL)最近出现了仅使用适度的注释数据训练大型模型的一种手段。除了降低注释成本。 SSL还显示出希望产生更强大和可推广的模型。因此,在本文中,我们在手术工具检测范式中介绍了半监督学习(SSL)框架,该框架旨在通过知识蒸馏方法来减轻培训数据的稀缺和数据失衡。在拟议的工作中,我们培训了一个标有数据的模型,该模型启动了教师学生的联合学习,在该学习中,学生接受了来自未标记数据的教师生成的伪标签的培训。我们提出了一个多级距离,在检测器的利益区域头部具有基于保证金的分类损失函数,以有效地将前景类别与背景区域隔离。我们在M2CAI16-Tool-locations数据集上的结果表明,我们的方法在不同的监督数据设置(1%,2%,5%,注释数据的10%)上的优越性,其中我们的模型可实现8%,12%和27的总体改善在最先进的SSL方法和完全监督的基线上,MAP中的%(在1%标记的数据上)。该代码可在https://github.com/mansoor-at/semi-supervise-surgical-tool-det上获得
translated by 谷歌翻译
与现场测量相比,遥感益处可以通过使大面积的监控更容易地进行栖息地保护,尤其是在可以自动分析遥感数据的情况下。监测的一个重要方面是对受监视区域中存在的栖息地类型进行分类和映射。自动分类是一项艰巨的任务,因为课程具有细粒度的差异,并且它们的分布是长尾巴且不平衡的。通常,用于自动土地覆盖分类的培训数据取决于完全注释的分割图,从遥感的图像到相当高的分类学,即森林,农田或市区等类别。自动栖息地分类的挑战是可靠的数据注释需要现场策略。因此,完整的分割图的生产成本很高,训练数据通常很稀疏,类似点,并且仅限于可以步行访问的区域。需要更有效地利用这些有限数据的方法。我们通过提出一种栖息地分类和映射的方法来解决这些问题,并应用此方法将整个芬兰拉普兰北部地区分类为Natura2000类。该方法的特征是使用从现场收集的细粒,稀疏,单像素注释,并与大量未经通知的数据结合在一起来产生分割图。比较了监督,无监督和半监督的方法,并证明了从较大的室外数据集中转移学习的好处。我们提出了一个\ ac {cnn}偏向于中心像素分类,与随机的森林分类器结合使用,该分类器比单独的模型本身产生更高的质量分类。我们表明,增加种植,测试时间的增加和半监督的学习可以进一步帮助分类。
translated by 谷歌翻译
在这项研究中,提出了一种半监督的学习(SSL)方法,用于改善双颞图像对检测的城市变化检测。所提出的方法适应了双任务暹罗差异网络,该网络不仅可以通过差分解码器进行预测,而且还可以通过语义解码器进行两种图像的片段建筑物。首先,对体系结构进行了修改,以产生从语义预测得出的第二个更改预测。其次,采用SSL来改善监督的变更检测。对于未标记的数据,我们引入了一种损失,鼓励网络预测两个变化输出之间的一致变化。使用SpaceNet7数据集对所提出的方法进行了有关城市变化检测的测试。与三个完全监督的基准相比,SSL取得了改善的结果。
translated by 谷歌翻译
Distantly-Supervised Named Entity Recognition (DS-NER) effectively alleviates the data scarcity problem in NER by automatically generating training samples. Unfortunately, the distant supervision may induce noisy labels, thus undermining the robustness of the learned models and restricting the practical application. To relieve this problem, recent works adopt self-training teacher-student frameworks to gradually refine the training labels and improve the generalization ability of NER models. However, we argue that the performance of the current self-training frameworks for DS-NER is severely underestimated by their plain designs, including both inadequate student learning and coarse-grained teacher updating. Therefore, in this paper, we make the first attempt to alleviate these issues by proposing: (1) adaptive teacher learning comprised of joint training of two teacher-student networks and considering both consistent and inconsistent predictions between two teachers, thus promoting comprehensive student learning. (2) fine-grained student ensemble that updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise. To verify the effectiveness of our proposed method, we conduct experiments on four DS-NER datasets. The experimental results demonstrate that our method significantly surpasses previous SOTA methods.
translated by 谷歌翻译