在值得信赖的机器学习中,这是一个重要的问题,可以识别与分配任务无关的输入的分布(OOD)输入。近年来,已经提出了许多分布式检测方法。本文的目的是识别共同的目标以及确定不同OOD检测方法的隐式评分函数。我们专注于在培训期间使用替代OOD数据的方法,以学习在测试时概括为新的未见外部分布的OOD检测分数。我们表明,内部和(不同)外部分布之间的二元歧视等同于OOD检测问题的几种不同的公式。当与标准分类器以共同的方式接受培训时,该二进制判别器达到了类似于离群暴露的OOD检测性能。此外,我们表明,异常暴露所使用的置信损失具有隐式评分函数,在训练和测试外部分配相同的情况下,以非平凡的方式与理论上最佳评分功能有所不同,这又是类似于训练基于能量的OOD检测器或添加背景类时使用的一种。在实践中,当以完全相同的方式培训时,所有这些方法的性能类似。
translated by 谷歌翻译
Determining whether inputs are out-of-distribution (OOD) is an essential building block for safely deploying machine learning models in the open world. However, previous methods relying on the softmax confidence score suffer from overconfident posterior distributions for OOD data. We propose a unified framework for OOD detection that uses an energy score. We show that energy scores better distinguish in-and out-of-distribution samples than the traditional approach using the softmax scores. Unlike softmax confidence scores, energy scores are theoretically aligned with the probability density of the inputs and are less susceptible to the overconfidence issue. Within this framework, energy can be flexibly used as a scoring function for any pre-trained neural classifier as well as a trainable cost function to shape the energy surface explicitly for OOD detection. On a CIFAR-10 pre-trained WideResNet, using the energy score reduces the average FPR (at TPR 95%) by 18.03% compared to the softmax confidence score. With energy-based training, our method outperforms the state-of-the-art on common benchmarks.
translated by 谷歌翻译
检测到分布(OOD)数据是一项任务,它正在接受计算机视觉的深度学习领域越来越多的研究注意力。但是,通常在隔离任务上评估检测方法的性能,而不是考虑串联中的潜在下游任务。在这项工作中,我们检查了存在OOD数据(SCOD)的选择性分类。也就是说,检测OOD样本的动机是拒绝它们,以便降低它们对预测质量的影响。我们在此任务规范下表明,与仅在OOD检测时进行评估时,现有的事后方法的性能大不相同。这是因为如果ID数据被错误分类,将分布分配(ID)数据与OOD数据混合在一起的问题不再是一个问题。但是,正确和不正确的预测的ID数据中的汇合变得不受欢迎。我们还提出了一种新颖的SCOD,SoftMax信息保留(SIRC)的方法,该方法通过功能不足信息来增强基于软疗法的置信度得分,以便在不牺牲正确和错误的ID预测之间的分离的情况下,可以提高其识别OOD样品的能力。在各种成像网尺度数据集和卷积神经网络体系结构上进行的实验表明,SIRC能够始终如一地匹配或胜过SCOD的基线,而现有的OOD检测方法则无法做到。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
本文我们的目标是利用异质的温度缩放作为校准策略(OOD)检测。此处的异质性是指每个样品的最佳温度参数可能不同,而不是传统的方法对整个分布使用相同的值。为了实现这一目标,我们提出了一种称为锚定的新培训策略,可以估算每个样品的适当温度值,从而导致几个基准的最新OOD检测性能。使用NTK理论,我们表明该温度函数估计与分类器的认知不确定性紧密相关,这解释了其行为。与某些表现最佳的OOD检测方法相反,我们的方法不需要暴露于其他离群数据集,自定义校准目标或模型结合。通过具有不同OOD检测设置的经验研究 - 远处,OOD附近和语义相干OOD - 我们建立了一种高效的OOD检测方法。可以在此处访问代码和模型-https://github.com/rushilanirudh/amp
translated by 谷歌翻译
对于在开放世界中部署的机器学习模型是必不可少的。最近,在训练期间(也称为离群暴露)在训练期间使用辅助外离群值数据集已显示出令人鼓舞的性能。由于潜在的OOD数据的样本空间可能是过大的,因此进行抽样信息的异常值至关重要。在这项工作中,我们提出了一种新型的基于后取样的离群矿井诗歌诗,该诗歌有助于有效利用异常数据,并促进了ID和OOD数据之间的紧凑决策边界,以改善检测。我们表明,诗在普通基准上建立了最先进的表现。与当前使用贪婪采样策略的最佳方法相比,诗在CIFAR-10和CIFAR-100上分别提高了相对性能的42.0%和24.2%(FPR95)。我们进一步提供了有关诗歌检测有效性的理论见解。
translated by 谷歌翻译
分销(OOD)检测对于在现实世界中部署机器学习模型是重要的,其中来自移位分布的测试数据可以自然地出现。虽然最近出现了何种算法方法,但何种算法检测,临界差距仍然存在理论上。在这项工作中,我们开发了一个分析框架,其特征,并统一了对OOD检测的理论理解。我们的分析框架激励了一种新颖的电子网络,创业板的检测方法,展示了理论和经验的优势。特别是,在CIFAR-100作为分布数据中,我们的方法优于竞争性基线16.57%(FPR95)。最后,我们正式提供可证明的保证和对我们的方法进行全面分析,支撑数据分布的各种性能如何影响OOD检测的性能。
translated by 谷歌翻译
分布(OOD)检测对于部署在野外的机器学习模型很重要。最近的方法使用辅助分离器数据将模型正规化以改进OOD检测。但是,这些方法是一个有力的分布假设,即辅助离群数据与分布(ID)数据完全可分离。在本文中,我们提出了一个利用野生混合数据的新型框架,该框架自然由ID和OOD样品组成。这样的野生数据很丰富,并且在将机器学习分类器部署在自然栖息地中时自由出现。我们的关键思想是制定一个约束的优化问题,并展示如何批准解决问题。我们的学习目标使OOD检测率最大化,但要受到ID数据的分类错误和ID示例的OOD错误率的限制。我们广泛评估了我们对常见的OOD检测任务的方法,并证明了卓越的性能。
translated by 谷歌翻译
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small-and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
translated by 谷歌翻译
检测分配(OOD)输入对于安全部署现实世界的深度学习模型至关重要。在评估良性分布和OOD样品时,检测OOD示例的现有方法很好。然而,在本文中,我们表明,当在分发的分布和OOD输入时,现有的检测机制可以极其脆弱,其具有最小的对抗扰动,这不会改变其语义。正式地,我们广泛地研究了对共同的检测方法的强大分布检测问题,并表明最先进的OOD探测器可以通过对分布和ood投入增加小扰动来容易地欺骗。为了抵消这些威胁,我们提出了一种称为芦荟的有效算法,它通过将模型暴露于对抗性inlier和异常值示例来执行鲁棒训练。我们的方法可以灵活地结合使用,并使现有方法稳健。在共同的基准数据集上,我们表明芦荟大大提高了最新的ood检测的稳健性,对CiFar-10和46.59%的CiFar-100改善了58.4%的Auroc改善。
translated by 谷歌翻译
深度神经网络对各种任务取得了出色的性能,但它们具有重要问题:即使对于完全未知的样本,也有过度自信的预测。已经提出了许多研究来成功过滤出这些未知的样本,但它们仅考虑狭窄和特定的任务,称为错误分类检测,开放式识别或分布外检测。在这项工作中,我们认为这些任务应该被视为根本存在相同的问题,因为理想的模型应该具有所有这些任务的检测能力。因此,我们介绍了未知的检测任务,以先前的单独任务的整合,用于严格检查深度神经网络对广谱的广泛未知样品的检测能力。为此,构建了不同尺度上的统一基准数据集,并且存在现有流行方法的未知检测能力进行比较。我们发现深度集合始终如一地优于检测未知的其他方法;但是,所有方法只针对特定类型的未知方式成功。可重复的代码和基准数据集可在https://github.com/daintlab/unknown-detection-benchmarks上获得。
translated by 谷歌翻译
Discriminative neural networks offer little or no performance guarantees when deployed on data not generated by the same process as the training distribution. On such out-of-distribution (OOD) inputs, the prediction may not only be erroneous, but confidently so, limiting the safe deployment of classifiers in real-world applications. One such challenging application is bacteria identification based on genomic sequences, which holds the promise of early detection of diseases, but requires a model that can output low confidence predictions on OOD genomic sequences from new bacteria that were not present in the training data. We introduce a genomics dataset for OOD detection that allows other researchers to benchmark progress on this important problem. We investigate deep generative model based approaches for OOD detection and observe that the likelihood score is heavily affected by population level background statistics. We propose a likelihood ratio method for deep generative models which effectively corrects for these confounding background statistics. We benchmark the OOD detection performance of the proposed method against existing approaches on the genomics dataset and show that our method achieves state-of-the-art performance. We demonstrate the generality of the proposed method by showing that it significantly improves OOD detection when applied to deep generative models of images.
translated by 谷歌翻译
Deep neural networks have attained remarkable performance when applied to data that comes from the same distribution as that of the training set, but can significantly degrade otherwise. Therefore, detecting whether an example is out-of-distribution (OoD) is crucial to enable a system that can reject such samples or alert users. Recent works have made significant progress on OoD benchmarks consisting of small image datasets. However, many recent methods based on neural networks rely on training or tuning with both in-distribution and out-of-distribution data. The latter is generally hard to define a-priori, and its selection can easily bias the learning. We base our work on a popular method ODIN 1 [21], proposing two strategies for freeing it from the needs of tuning with OoD data, while improving its OoD detection performance. We specifically propose to decompose confidence scoring as well as a modified input pre-processing method. We show that both of these significantly help in detection performance. Our further analysis on a larger scale image dataset shows that the two types of distribution shifts, specifically semantic shift and non-semantic shift, present a significant difference in the difficulty of the problem, providing an analysis of when ODIN-like strategies do or do not work.
translated by 谷歌翻译
已知现代深度神经网络模型将错误地将分布式(OOD)测试数据分类为具有很高信心的分数(ID)培训课程之一。这可能会对关键安全应用产生灾难性的后果。一种流行的缓解策略是训练单独的分类器,该分类器可以在测试时间检测此类OOD样本。在大多数实际设置中,在火车时间尚不清楚OOD的示例,因此,一个关键问题是:如何使用合成OOD样品来增加ID数据以训练这样的OOD检测器?在本文中,我们为称为CNC的OOD数据增强提出了一种新颖的复合腐败技术。 CNC的主要优点之一是,除了培训集外,它不需要任何固定数据。此外,与当前的最新技术(SOTA)技术不同,CNC不需要在测试时间进行反向传播或结合,从而使我们的方法在推断时更快。我们与过去4年中主要会议的20种方法进行了广泛的比较,表明,在OOD检测准确性和推理时间方面,使用基于CNC的数据增强训练的模型都胜过SOTA。我们包括详细的事后分析,以研究我们方法成功的原因,并确定CNC样本的较高相对熵和多样性是可能的原因。我们还通过对二维数据集进行零件分解分析提供理论见解,以揭示(视觉和定量),我们的方法导致ID类别周围的边界更紧密,从而更好地检测了OOD样品。源代码链接:https://github.com/cnc-ood
translated by 谷歌翻译
基于密度的分布(OOD)检测最近显示了检测OOD图像的任务不可靠。基于各种密度比的方法实现了良好的经验性能,但是方法通常缺乏原则性的概率建模解释。在这项工作中,我们建议在建立基于能量的模型并采用不同基础分布的新框架下统一基于密度比的方法。在我们的框架下,密度比可以看作是隐式语义分布的非均衡密度。此外,我们建议通过类比率估计直接估计数据样本的密度比。与最近的工作相比,我们报告了有关OOD图像问题的竞争结果,这些工作需要对任务进行深层生成模型的培训。我们的方法使一个简单而有效的途径可以解决OOD检测问题。
translated by 谷歌翻译
检测到分布输入对于在现实世界中安全部署机器学习模型至关重要。然而,已知神经网络遭受过度自信的问题,在该问题中,它们对分布和分布的输入的信心异常高。在这项工作中,我们表明,可以通过在训练中实施恒定的向量规范来通过logit归一化(logitnorm)(logitnorm)来缓解此问题。我们的方法是通过分析的激励,即logit的规范在训练过程中不断增加,从而导致过度自信的产出。因此,LogitNorm背后的关键思想是将网络优化期间输出规范的影响解散。通过LogitNorm培训,神经网络在分布数据和分布数据之间产生高度可区分的置信度得分。广泛的实验证明了LogitNorm的优势,在公共基准上,平均FPR95最高为42.30%。
translated by 谷歌翻译
分布(OOD)检测是在开放世界中部署机器学习模型的关键任务。基于距离的方法已经证明了有望,如果测试样品离分布(ID)数据相对遥远,则将测试样品视为OOD。但是,先前的方法对基础特征空间施加了强有力的分布假设,这可能并不总是存在。在本文中,我们探讨了非参数最近邻居距离的疗效,以检测OOD,这在文献中很大程度上被忽略了。与先前的工作不同,我们的方法不会施加任何分布假设,因此提供了更强的灵活性和一般性。我们证明了在几个基准测试中基于邻元的OOD检测的有效性,并建立了卓越的性能。在对Imagenet-1K训练的同一模型下,我们的方法将假阳性率(FPR@tpr95)降低了24.77%,与强大的基线SSD+相比,使用参数方法Mahalanobis在检测中。可用代码:https://github.com/deeplearning-wisc/knn-ood。
translated by 谷歌翻译
Novelty detection, i.e., identifying whether a given sample is drawn from outside the training distribution, is essential for reliable machine learning. To this end, there have been many attempts at learning a representation well-suited for novelty detection and designing a score based on such representation. In this paper, we propose a simple, yet effective method named contrasting shifted instances (CSI), inspired by the recent success on contrastive learning of visual representations. Specifically, in addition to contrasting a given sample with other instances as in conventional contrastive learning methods, our training scheme contrasts the sample with distributionally-shifted augmentations of itself. Based on this, we propose a new detection score that is specific to the proposed training scheme. Our experiments demonstrate the superiority of our method under various novelty detection scenarios, including unlabeled one-class, unlabeled multi-class and labeled multi-class settings, with various image benchmark datasets. Code and pre-trained models are available at https://github.com/alinlab/CSI.
translated by 谷歌翻译
常规监督学习或分类的主要假设是,测试样本是从与训练样本相同的分布中得出的,该样本称为封闭设置学习或分类。在许多实际情况下,事实并非如此,因为测试数据中有未知数或看不见的类样本,这称为“开放式”方案,需要检测到未知数。该问题称为开放式识别问题,在安全至关重要的应用中很重要。我们建议通过学习成对相似性来检测未知数(或看不见的类样本)。提出的方法分为两个步骤。它首先使用培训中出现的所见类学习了一个封闭的集体分类器,然后学习如何将看到的类与伪单人(自动生成的看不见的类样本)进行比较。伪无表情的一代是通过对可见或训练样品进行分配转换增加而进行的。我们称我们的方法OPG(基于伪看不见的数据生成开放式识别)。实验评估表明,基于相似性的功能可以成功区分基准数据集中的未见特征,以进行开放式识别。
translated by 谷歌翻译
由于其实际重要性,在提高神经网络安全部署方面的实际重要性,最近经济分配(OOD)检测最近受到了很大的关注。其中一个主要挑战是模型往往会对OOD数据产生高度自信的预测,这在ood检测中破坏了驾驶原理,即该模型应该仅对分布式样品充满信心。在这项工作中,我们提出了反应 - 一种简单有效的技术,用于减少对数据数据的模型过度限制。我们的方法是通过关于神经网络内部激活的新型分析,其为OOD分布显示出高度独特的签名模式。我们的方法可以有效地拓展到不同的网络架构和不同的OOD检测分数。我们经验证明,反应在全面的基准数据集套件上实现了竞争检测性能,并为我们的方法进行了理论解释。与以前的最佳方法相比,在ImageNet基准测试中,反应将假阳性率(FPR95)降低25.05%。
translated by 谷歌翻译