血压(BP)是心血管疾病和中风最有影响力的生物标志物之一;因此,需要定期监测以诊断和预防医疗并发症的任何出现。目前携带的携带BP监测的无齿状方法,虽然是非侵入性和不引人注目的,涉及围绕指尖光肌谱(PPG)信号的显式特征工程。为了规避这一点,我们提出了一种端到端的深度学习解决方案,BP-Net,它使用PPG波形来估计通过中间连续动脉BP来估计收缩压BP(SBP),平均压力(MAP)和舒张压BP(DBP) (ABP)波形。根据英国高血压协会(BHS)标准的条款,BP-Net为SBP估计实现了DBP和地图估计和B级的A级。 BP-Net还满足了医疗仪器(AAMI)标准的推进和地图估计,分别实现了5.16mmHg和2.89mmHg的平均误差(MAE),分别用于SBP和DBP。此外,我们通过在Raspberry PI 4设备上部署BP-Net来建立我们的方法的无处不在的潜力,并为我们的模型实现4.25毫秒的推理时间来将PPG波形转换为ABP波形。
translated by 谷歌翻译
目的:本文侧重于开发鲁棒和准确的加工解决方案,用于连续和较低的血压(BP)监测。在这方面,提出了一种基于深入的基于深度学习的框架,用于计算收缩和舒张BP上的低延迟,连续和无校准的上限和下界。方法:称为BP-Net,所提出的框架是一种新型卷积架构,可提供更长的有效内存,同时实现偶然拨号卷积和残留连接的卓越性能。利用深度学习的实际潜力在提取内在特征(深度特征)并增强长期稳健性,BP-Net使用原始的心电图(ECG)和光电觉体图(PPG)信号而无需提取任何形式的手工制作功能在现有解决方案中很常见。结果:通过利用最近文献中使用的数据集未统一和正确定义的事实,基准数据集由来自PhysoioNet获得的模拟I和MIMIC-III数据库构建。所提出的BP-Net是基于该基准数据集进行评估,展示了有希望的性能并显示出优异的普遍能力。结论:提出的BP-NET架构比规范复发网络更准确,增强了BP估计任务的长期鲁棒性。意义:建议的BP-NET架构解决了现有的BP估计解决方案的关键缺点,即,严重依赖于提取手工制作的特征,例如脉冲到达时间(PAT),以及;缺乏稳健性。最后,构造的BP-Net DataSet提供了一个统一的基础,用于评估和比较基于深度学习的BP估计算法。
translated by 谷歌翻译
心血管疾病是死亡率最严重的原因之一,每年在世界各地遭受沉重的生命。对血压的持续监测似乎是最可行的选择,但这需要一个侵入性的过程,带来了几层复杂性。这激发了我们开发一种通过使用光杀解功能图(PPG)信号的非侵入性方法来预测连续动脉血压(ABP)波形的方法。此外,我们探索了深度学习的优势,因为它可以通过使手工制作的功能计算无关紧要,这将使我们无法坚持理想形状的PPG信号,这是现有方法的缺点。因此,我们提出了一种基于深度学习的方法PPG2ABP,该方法可以从输入PPG信号中预测连续的ABP波形,平均绝对误差为4.604 mmHg,可保留一致的形状,大小和相位。但是,PPG2ABP的更惊人的成功事实证明,来自预测的ABP波形的DBP,MAP和SBP的计算值超过了几个指标下的现有作品,尽管没有明确培训PPG2ABP。
translated by 谷歌翻译
心血管疾病是世界各地最常见的死亡原因。为了检测和治疗心脏相关的疾病,需要连续血压(BP)监测以及许多其他参数。为此目的开发了几种侵入性和非侵入性方法。用于持续监测BP的医院中使用的大多数现有方法是侵入性的。相反,基于袖带的BP监测方法,可以预测收缩压(SBP)和舒张压(DBP),不能用于连续监测。几项研究试图从非侵​​入性可收集信号(例如光学肌谱(PPG)和心电图(ECG))预测BP,其可用于连续监测。在这项研究中,我们探讨了自动化器在PPG和ECG信号中预测BP的适用性。在12,000岁的MIMIC-II数据集中进行了调查,发现了一个非常浅的一维AutoEncoder可以提取相关功能,以预测与最先进的SBP和DBP在非常大的数据集上的性能。从模拟-II数据集的一部分的独立测试分别为SBP和DBP提供了2.333和0.713的MAE。在40个主题的外部数据集上,模型在MIMIC-II数据集上培训,分别为SBP和DBP提供2.728和1.166的MAE。对于这种情况来说,结果达到了英国高血压协会(BHS)A级并超越了目前文学的研究。
translated by 谷歌翻译
使用人工智能算法对连续,非侵入性,无齿状血压(BP)测量进行了广泛的研究。这种方法涉及从ECG,PPG,ICG,BCG等生理信号中提取某些特征作为独立变量,并从动脉血压(ABP)信号中提取特征作为依赖变量,然后使用机器学习算法来开发血压估计基于这些数据的模型。该领域的最大挑战是估计模型的准确性不足。本文提出了一种具有聚类步骤的新型血压估计方法,用于精度改善。所提出的方法涉及从心电图(ECG)和光电读数(PPG)信号中提取脉冲传输时间(PPG),PPG强度比(PIR)和心率(HR)特征作为聚类和回归的输入,提取收缩压( SBP)和舒张压(DBP)来自ABP信号的特征作为依赖变量,最后通过应用梯度升压回归(GBR),随机森林回归(RFR)和每个群集的多层的Perceptron回归(MLP)开发回归模型。使用MIMICII数据集来实现该方法,其中用于确定最佳数量的簇的轮廓标准。结果表明,由于采用群集算法,然后在每个簇上开发回归模型,并且最终加权平均可以显着提高,因此可以显着改善精度。结果基于每个群集的错误。当用5个集群和GBR实施时,该方法产生了2.56的MAE,对于SBP估计,2.23对于DBP估计,这显着优于没有聚类的最佳结果(DBP:6.27,SBP:6.36)。
translated by 谷歌翻译
远程光插图学(RPPG)是一种快速,有效,廉价和方便的方法,用于收集生物识别数据,因为它可以使用面部视频来估算生命体征。事实证明,远程非接触式医疗服务供应在COVID-19大流行期间是可怕的必要性。我们提出了一个端到端框架,以根据用户的视频中的RPPG方法来衡量人们的生命体征,包括心率(HR),心率变异性(HRV),氧饱和度(SPO2)和血压(BP)(BP)(BP)用智能手机相机捕获的脸。我们以实时的基于深度学习的神经网络模型来提取面部标志。通过使用预测的面部标志来提取多个称为利益区域(ROI)的面部斑块(ROI)。应用了几个过滤器,以减少称为血量脉冲(BVP)信号的提取的心脏信号中ROI的噪声。我们使用两个公共RPPG数据集培训和验证了机器学习模型,即Tokyotech RPPG和脉搏率检测(PURE)数据集,我们的模型在其上实现了以下平均绝对错误(MAE):a),HR,1.73和3.95 BEATS- beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-s-s-s-s-s-y-peats-beats-beats-beats-ship-s-s-s-in-chin-p-in-in-in-in-in-c--in-in-c-le-in-in- -t一下制。每分钟(bpm),b)分别为HRV,分别为18.55和25.03 ms,c)对于SPO2,纯数据集上的MAE为1.64。我们在现实生活环境中验证了端到端的RPPG框架,修订,从而创建了视频HR数据集。我们的人力资源估计模型在此数据集上达到了2.49 bpm的MAE。由于没有面对视频的BP测量不存在公开可用的RPPG数据集,因此我们使用了带有指标传感器信号的数据集来训练我们的模型,还创建了我们自己的视频数据集Video-BP。在我们的视频BP数据集中,我们的BP估计模型的收缩压(SBP)达到6.7 mmHg,舒张压(DBP)的MAE为9.6 mmHg。
translated by 谷歌翻译
呼吸率(RR)是重要的生物标志物,因为RR变化可以反映严重的医学事件,例如心脏病,肺部疾病和睡眠障碍。但是,不幸的是,标准手动RR计数容易出现人为错误,不能连续执行。这项研究提出了一种连续估计RR,RRWAVENET的方法。该方法是一种紧凑的端到端深度学习模型,不需要特征工程,可以将低成本的原始光摄影学(PPG)用作输入信号。对RRWAVENET进行了独立于主题的测试,并与三个数据集(BIDMC,Capnobase和Wesad)中的基线进行了比较,并使用三个窗口尺寸(16、32和64秒)进行了比较。 RRWAVENET优于最佳窗口大小为1.66 \ pm 1.01、1.59 \ pm 1.08的最佳绝对错误的最新方法,每个数据集每分钟每分钟呼吸0.96。在远程监视设置(例如在WESAD数据集中),我们将传输学习应用于其他两个ICU数据集,将MAE降低到1.52 \ pm每分钟0.50呼吸,显示此模型可以准确且实用的RR对负担得起的可穿戴设备进行准确估算。我们的研究表明,在远程医疗和家里,远程RR监测的可行性。
translated by 谷歌翻译
心房颤动(AF)是全球最普遍的心律失常,其中2%的人口受影响。它与增加的中风,心力衰竭和其他心脏相关并发症的风险有关。监测风险的个体和检测无症状AF可能导致相当大的公共卫生益处,因为无误的人可以采取预防措施的生活方式改变。随着可穿戴设备的增加,个性化的医疗保健将越来越多。这些个性化医疗保健解决方案需要准确地分类生物信号,同时计算廉价。通过推断设备,我们避免基于云和网络连接依赖性等基于云的系统固有的问题。我们提出了一种有效的管道,用于实时心房颤动检测,精度高精度,可在超边缘设备中部署。本研究中采用的特征工程旨在优化所拟议的管道中使用的资源有效的分类器,该分类器能够以每单纯折衷的内存足迹以10 ^ 5倍型号优惠。分类准确性2%。我们还获得了更高的准确性约为6%,同时消耗403 $ \ times $较小的内存,与以前的最先进的(SOA)嵌入式实现相比为5.2 $ \ times $。
translated by 谷歌翻译
可穿戴设备和医疗器互联网(IOMT)的最新发展允许实时监控和记录心电图(ECG)信号。然而,由于能量和内存约束,对ECG信号的连续监测在低功耗可穿戴设备中具有挑战性。因此,在本文中,我们提出了一种新颖和节能的方法,用于连续监测低功耗可穿戴设备的心脏。所提出的方法由三个不同的层组成:1)噪声/伪像检测层,以级别ECG信号的质量; 2)正常/异常拍摄分类层以检测心电图信号中的异常,3)异常搏动分类层以检测来自ECG信号的疾病。此外,分布式多输出卷积神经网络(CNN)架构用于降低边缘/云之间的能量消耗和等待时间。我们的方法论在众所周知的MIT-BIH心律失常数据集上达到了99.2%的准确性。 Real硬件的评估表明,我们的方法是适用于具有32KB最小RAM的设备。此外,与最先进的工作相比,所提出的方法可以获得7美元的能效。
translated by 谷歌翻译
Nowadays, due to the widespread use of smartphones in everyday life and the improvement of computational capabilities of these devices, many complex tasks can now be deployed on them. Concerning the need for continuous monitoring of vital signs, especially for the elderly or those with certain types of diseases, the development of algorithms that can estimate vital signs using smartphones has attracted researchers worldwide. Such algorithms estimate vital signs (heart rate and oxygen saturation level) by processing an input PPG signal. These methods often apply multiple pre-processing steps to the input signal before the prediction step. This can increase the computational complexity of these methods, meaning only a limited number of mobile devices can run them. Furthermore, multiple pre-processing steps also require the design of a couple of hand-crafted stages to obtain an optimal result. This research proposes a novel end-to-end solution to mobile-based vital sign estimation by deep learning. The proposed method does not require any pre-processing. Due to the use of fully convolutional architecture, the parameter count of our proposed model is, on average, a quarter of the ordinary architectures that use fully-connected layers as the prediction heads. As a result, the proposed model has less over-fitting chance and computational complexity. A public dataset for vital sign estimation, including 62 videos collected from 35 men and 27 women, is also provided. The experimental results demonstrate state-of-the-art estimation accuracy.
translated by 谷歌翻译
心电图(ECG)是用于监测心脏电信号和评估其功能的最常见和常规诊断工具。人心脏可能患有多种疾病,包括心律不齐。心律不齐是一种不规则的心律,在严重的情况下会导致心脏中风,可以通过ECG记录诊断。由于早期发现心律不齐非常重要,因此在过去的几十年中,计算机化和自动化的分类以及这些异常心脏信号的识别引起了很多关注。方法:本文引入了一种轻度的深度学习方法,以高精度检测8种不同的心律不齐和正常节奏。为了利用深度学习方法,将重新采样和基线徘徊清除技术应用于ECG信号。在这项研究中,将500个样本ECG段用作模型输入。节奏分类是通过11层网络以端到端方式完成的,而无需手工制作的手动功能提取。结果:为了评估提出的技术,从两个Physionet数据库,MIT-BIH心律失常数据库和长期AF数据库中选择了ECG信号。基于卷积神经网络(CNN)和长期记忆(LSTM)的组合,提出的深度学习框架比大多数最先进的方法显示出令人鼓舞的结果。所提出的方法达到98.24%的平均诊断准确性。结论:成功开发和测试了使用多种心电图信号的心律失常分类的训练有素的模型。意义:由于本工作使用具有高诊断精度的光分类技术与其他值得注意的方法相比,因此可以在Holter Monitor设备中成功实施以进行心律失常检测。
translated by 谷歌翻译
血压(BP)监测对于日常医疗保健至关重要,尤其是对于心血管疾病。但是,BP值主要是通过接触传感方法获得的,这是不方便且不友好的BP测量。因此,我们提出了一个有效的端到端网络,以估算面部视频中的BP值,以实现日常生活中的远程BP测量。在这项研究中,我们首先得出了短期(〜15s)面部视频的时空图。根据时空图,我们随后通过设计的血压分类器回归了BP范围,并同时通过每个BP范围内的血压计算器来计算特定值。此外,我们还制定了一种创新的过采样培训策略,以解决不平衡的数据分配问题。最后,我们在私有数据集ASPD上培训了拟议的网络,并在流行的数据集MMSE-HR上对其进行了测试。结果,拟议的网络实现了收缩压和舒张压测量的最先进的MAE,为12.35 mmHg和9.5 mmHg,这比最近的工作要好。它得出的结论是,在现实世界中,提出的方法对于基于摄像头的BP监测具有巨大潜力。
translated by 谷歌翻译
本文的重点是概念证明,机器学习(ML)管道,该管道从低功率边缘设备上获取的压力传感器数据中提取心率。 ML管道包括一个UPS采样器神经网络,信号质量分类器以及优化的1D横向扭转神经网络,以高效且准确的心率估计。这些型号的设计使管道小于40 kb。此外,开发了由UPS采样器和分类器组成的杂种管道,然后开发了峰值检测算法。管道部署在ESP32边缘设备上,并针对信号处理进行基准测试,以确定能量使用和推理时间。结果表明,与传统算法相比,提出的ML和杂种管道将能量和时间减少82%和28%。 ML管道的主要权衡是准确性,平均绝对误差(MAE)为3.28,而混合动力车和信号处理管道为2.39和1.17。因此,ML模型显示出在能源和计算约束设备中部署的希望。此外,ML管道的较低采样率和计算要求可以使自定义硬件解决方案降低可穿戴设备的成本和能源需求。
translated by 谷歌翻译
智能手表或健身追踪器由于负担得起和纵向监测功能而获得了潜在的健康跟踪设备的广泛欢迎。为了进一步扩大其健康跟踪能力,近年来,研究人员开始研究在实时利用光摄影学(PPG)数据中进行心房颤动(AF)检测的可能性,这是一种几乎所有智能手表中广泛使用的廉价传感器。从PPG信号检测AF检测的重大挑战来自智能手表PPG信号中的固有噪声。在本文中,我们提出了一种基于深度学习的新方法,即利用贝叶斯深度学习的力量来准确地从嘈杂的PPG信号中推断出AF风险,同时提供了预测的不确定性估计。在两个公开可用数据集上进行的广泛实验表明,我们提出的方法贝尼斯甲的表现优于现有的最新方法。此外,贝内斯比特(Bayesbeat)的参数比最先进的基线方法要少40-200倍,使其适合在资源约束可穿戴设备中部署。
translated by 谷歌翻译
Cardiac resynchronization therapy (CRT) is a treatment that is used to compensate for irregularities in the heartbeat. Studies have shown that this treatment is more effective in heart patients with left bundle branch block (LBBB) arrhythmia. Therefore, identifying this arrhythmia is an important initial step in determining whether or not to use CRT. On the other hand, traditional methods for detecting LBBB on electrocardiograms (ECG) are often associated with errors. Thus, there is a need for an accurate method to diagnose this arrhythmia from ECG data. Machine learning, as a new field of study, has helped to increase human systems' performance. Deep learning, as a newer subfield of machine learning, has more power to analyze data and increase systems accuracy. This study presents a deep learning model for the detection of LBBB arrhythmia from 12-lead ECG data. This model consists of 1D dilated convolutional layers. Attention mechanism has also been used to identify important input data features and classify inputs more accurately. The proposed model is trained and validated on a database containing 10344 12-lead ECG samples using the 10-fold cross-validation method. The final results obtained by the model on the 12-lead ECG data are as follows. Accuracy: 98.80+-0.08%, specificity: 99.33+-0.11 %, F1 score: 73.97+-1.8%, and area under the receiver operating characteristics curve (AUC): 0.875+-0.0192. These results indicate that the proposed model in this study can effectively diagnose LBBB with good efficiency and, if used in medical centers, will greatly help diagnose this arrhythmia and early treatment.
translated by 谷歌翻译
Much of the information of breathing is contained within the photoplethysmography (PPG) signal, through changes in venous blood flow, heart rate and stroke volume. We aim to leverage this fact, by employing a novel deep learning framework which is a based on a repurposed convolutional autoencoder. Our model aims to encode all of the relevant respiratory information contained within photoplethysmography waveform, and decode it into a waveform that is similar to a gold standard respiratory reference. The model is employed on two photoplethysmography data sets, namely Capnobase and BIDMC. We show that the model is capable of producing respiratory waveforms that approach the gold standard, while in turn producing state of the art respiratory rate estimates. We also show that when it comes to capturing more advanced respiratory waveform characteristics such as duty cycle, our model is for the most part unsuccessful. A suggested reason for this, in light of a previous study on in-ear PPG, is that the respiratory variations in finger-PPG are far weaker compared with other recording locations. Importantly, our model can perform these waveform estimates in a fraction of a millisecond, giving it the capacity to produce over 6 hours of respiratory waveforms in a single second. Moreover, we attempt to interpret the behaviour of the kernel weights within the model, showing that in part our model intuitively selects different breathing frequencies. The model proposed in this work could help to improve the usefulness of consumer PPG-based wearables for medical applications, where detailed respiratory information is required.
translated by 谷歌翻译
Electrocardiography (ECG), an electrical measurement which captures cardiac activities, is the gold standard for diagnosing cardiovascular disease (CVD). However, ECG is infeasible for continuous cardiac monitoring due to its requirement for user participation. By contrast, photoplethysmography (PPG) provides easy-to-collect data, but its limited accuracy constrains its clinical usage. To combine the advantages of both signals, recent studies incorporate various deep learning techniques for the reconstruction of PPG signals to ECG; however, the lack of contextual information as well as the limited abilities to denoise biomedical signals ultimately constrain model performance. In this research, we propose Performer, a novel Transformer-based architecture that reconstructs ECG from PPG and combines the PPG and reconstructed ECG as multiple modalities for CVD detection. This method is the first time that Transformer sequence-to-sequence translation has been performed on biomedical waveform reconstruction, combining the advantages of both PPG and ECG. We also create Shifted Patch-based Attention (SPA), an effective method to encode/decode the biomedical waveforms. Through fetching the various sequence lengths and capturing cross-patch connections, SPA maximizes the signal processing for both local features and global contextual representations. The proposed architecture generates a state-of-the-art performance of 0.29 RMSE for the reconstruction of PPG to ECG on the BIDMC database, surpassing prior studies. We also evaluated this model on the MIMIC-III dataset, achieving a 95.9% accuracy in CVD detection, and on the PPG-BP dataset, achieving 75.9% accuracy in related CVD diabetes detection, indicating its generalizability. As a proof of concept, an earring wearable named PEARL (prototype), was designed to scale up the point-of-care (POC) healthcare system.
translated by 谷歌翻译
Seizure type identification is essential for the treatment and management of epileptic patients. However, it is a difficult process known to be time consuming and labor intensive. Automated diagnosis systems, with the advancement of machine learning algorithms, have the potential to accelerate the classification process, alert patients, and support physicians in making quick and accurate decisions. In this paper, we present a novel multi-path seizure-type classification deep learning network (MP-SeizNet), consisting of a convolutional neural network (CNN) and a bidirectional long short-term memory neural network (Bi-LSTM) with an attention mechanism. The objective of this study was to classify specific types of seizures, including complex partial, simple partial, absence, tonic, and tonic-clonic seizures, using only electroencephalogram (EEG) data. The EEG data is fed to our proposed model in two different representations. The CNN was fed with wavelet-based features extracted from the EEG signals, while the Bi-LSTM was fed with raw EEG signals to let our MP-SeizNet jointly learns from different representations of seizure data for more accurate information learning. The proposed MP-SeizNet was evaluated using the largest available EEG epilepsy database, the Temple University Hospital EEG Seizure Corpus, TUSZ v1.5.2. We evaluated our proposed model across different patient data using three-fold cross-validation and across seizure data using five-fold cross-validation, achieving F1 scores of 87.6% and 98.1%, respectively.
translated by 谷歌翻译
心血管疾病(CVD)是全球死亡的第一大原因。尽管有越来越多的证据表明心房颤动(AF)与各种CVD有着密切的关联,但这种心律不齐通常是使用心电图(ECG)诊断的,这是一种无风险,无侵入性和具有成本效益的工具。在任何威胁生命的疾病/疾病发展之前,不断和远程监视受试者的心电图信息迅速诊断和及时对AF进行预处理的潜力。最终,可以降低CVD相关的死亡率。在此手稿中,展示了体现可穿戴心电图设备,移动应用程序和后端服务器的个性化医疗系统的设计和实施。该系统不断监视用户的心电图信息,以提供个性化的健康警告/反馈。用户能够通过该系统与他们的配对健康顾问进行远程诊断,干预措施等。已经评估了实施的可穿戴ECG设备,并显示出极好的一致性(CVRMS = 5.5%),可接受的一致性(CVRMS = CVRMS = CVRMS = 12.1%),可忽略不计的RR间隙错误(<1.4%)。为了提高可穿戴设备的电池寿命,提出了使用ECG信号的准周期特征来实现压缩的有损压缩模式。与公认的架构相比,它在压缩效率和失真方面优于其他模式,并在MIT-BIH数据库中以ECG信号的某个PRD或RMSE达到了至少2倍的Cr。为了在拟议系统中实现自动化AF诊断/筛查,开发了基于重新系统的AF检测器。对于2017年Physionet CINC挑战的ECG记录,该AF探测器获得了平均测试F1 = 85.10%和最佳测试F1 = 87.31%,表现优于最先进。
translated by 谷歌翻译
在过去的二十年中,癫痫发作检测和预测算法迅速发展。然而,尽管性能得到了重大改进,但它们使用常规技术(例如互补的金属氧化物 - 轴导剂(CMO))进行的硬件实施,在权力和面积受限的设置中仍然是一项艰巨的任务;特别是当使用许多录音频道时。在本文中,我们提出了一种新型的低延迟平行卷积神经网络(CNN)体系结构,与SOTA CNN体系结构相比,网络参数少2-2,800倍,并且达到5倍的交叉验证精度为99.84%,用于癫痫发作检测,检测到99.84%。癫痫发作预测的99.01%和97.54%分别使用波恩大学脑电图(EEG),CHB-MIT和SWEC-ETHZ癫痫发作数据集进行评估。随后,我们将网络实施到包含电阻随机存储器(RRAM)设备的模拟横梁阵列上,并通过模拟,布置和确定系统中CNN组件的硬件要求来提供全面的基准。据我们所知,我们是第一个平行于在单独的模拟横杆上执行卷积层内核的人,与SOTA混合Memristive-CMOS DL加速器相比,潜伏期降低了2个数量级。此外,我们研究了非理想性对系统的影响,并研究了量化意识培训(QAT),以减轻由于ADC/DAC分辨率较低而导致的性能降解。最后,我们提出了一种卡住的重量抵消方法,以减轻因卡住的Ron/Roff Memristor重量而导致的性能降解,而无需再进行重新培训而恢复了高达32%的精度。我们平台的CNN组件估计在22nm FDSOI CMOS流程中占据31.255mm $^2 $的面积约为2.791W。
translated by 谷歌翻译