本文提出了一种新的方法来提高单模式(LIDAR)3D对象检测器,以模拟遵循多模式(LIDAR图像)检测器的特征和响应。该方法仅在训练单模式检测器时才需要LIDAR-图像数据,并且一旦训练良好,它只需要推断时的LiDAR数据即可。我们设计了一个新颖的框架来实现这种方法:响应蒸馏以关注关键响应样本并避免背景样本;从估计的关键体素中学习体素语义和关系的稀疏 - 素蒸馏;精细颗粒到点蒸馏,以更好地了解小对象的特征;和实例蒸馏以进一步增强深度效果的一致性。 Nuscenes数据集的实验结果表明,我们的方法优于所有仅SOTA激光雷达3D检测器,甚至超过了关键NDS指标上的基线激光镜检测器,填充了单个和多模式检测器之间的72%MAP间隙。
translated by 谷歌翻译
为了提高单帧3D对象检测的检测器,我们提出了一种新方法来训练它,以模拟在多帧点云上训练的检测器之后的功能和响应。我们的方法仅在训练单帧检测器时才需要多帧点云,并且一旦受过训练,它就可以在推理过程中仅用单帧点云作为输入来检测对象。我们设计了一个新颖的模拟多帧单阶段对象检测器(SMF-SSD)框架来实现该方法:多视图密集对象融合以使地面真实对象具有生成多帧点云;自我发项体素蒸馏,以促进从多框到单框体素的一到一对知识转移;多尺度的BEV功能蒸馏以在低级空间和高级语义BEV特征中传递知识;和自适应响应蒸馏以激活高置信度和准确定位的单帧反应。 Waymo测试集上的实验结果表明,我们的SMF-SSD始终优于所有最新的单帧3D对象检测器,用于所有难度级别1和2的对象类别的MAP和MAPH。
translated by 谷歌翻译
来自LIDAR或相机传感器的3D对象检测任务对于自动驾驶至关重要。先锋尝试多模式融合的尝试补充了稀疏的激光雷达点云,其中包括图像的丰富语义纹理信息,以额外的网络设计和开销为代价。在这项工作中,我们提出了一个名为SPNET的新型语义传递框架,以通过丰富的上下文绘画的指导来提高现有基于激光雷达的3D检测模型的性能,在推理过程中没有额外的计算成本。我们的关键设计是首先通过训练语义绘制的教师模型来利用地面真实标签中潜在的指导性语义知识,然后引导纯LIDAR网络通过不同的粒度传播模块来学习语义绘制的表示:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类:类别:类别:类别:类别:类别:类别:类别: - 通过,像素的传递和实例传递。实验结果表明,所提出的SPNET可以与大多数现有的3D检测框架无缝合作,其中AP增益为1〜5%,甚至在KITTI测试基准上实现了新的最新3D检测性能。代码可在以下网址获得:https://github.com/jb892/sp​​net。
translated by 谷歌翻译
它得到了很好的认识到,从深度感知的LIDAR点云和语义富有的立体图像中融合互补信息将有利于3D对象检测。然而,探索稀疏3D点和密集2D像素之间固有的不自然相互作用并不重要。为了简化这种困难,最近的建议通常将3D点投影到2D图像平面上以对图像数据进行采样,然后聚合点处的数据。然而,这种方法往往遭受点云和RGB图像的分辨率之间的不匹配,导致次优性能。具体地,作为多模态数据聚合位置的稀疏点导致高分辨率图像的严重信息丢失,这反过来破坏了多传感器融合的有效性。在本文中,我们呈现VPFNET - 一种新的架构,可以在“虚拟”点处巧妙地对齐和聚合点云和图像数据。特别地,它们的密度位于3D点和2D像素的密度之间,虚拟点可以很好地桥接两个传感器之间的分辨率间隙,从而保持更多信息以进行处理。此外,我们还研究了可以应用于点云和RGB图像的数据增强技术,因为数据增强对迄今为止对3D对象探测器的贡献不可忽略。我们对Kitti DataSet进行了广泛的实验,与最先进的方法相比,观察到了良好的性能。值得注意的是,我们的VPFNET在KITTI测试集上实现了83.21 \%中等3D AP和91.86 \%适度的BEV AP,自2021年5月21日起排名第一。网络设计也考虑了计算效率 - 我们可以实现FPS 15对单个NVIDIA RTX 2080TI GPU。该代码将用于复制和进一步调查。
translated by 谷歌翻译
两阶段探测器在3D对象检测中已广受欢迎。大多数两阶段的3D检测器都使用网格点,体素电网或第二阶段的ROI特征提取的采样关键点。但是,这种方法在处理不均匀分布和稀疏的室外点方面效率低下。本文在三个方面解决了这个问题。 1)动态点聚集。我们建议补丁搜索以快速在本地区域中为每个3D提案搜索点。然后,将最远的体素采样采样用于均匀采样点。特别是,体素尺寸沿距离变化,以适应点的不均匀分布。 2)Ro-Graph Poling。我们在采样点上构建本地图,以通过迭代消息传递更好地模型上下文信息和地雷关系。 3)视觉功能增强。我们引入了一种简单而有效的融合策略,以补偿具有有限语义提示的稀疏激光雷达点。基于这些模块,我们将图形R-CNN构建为第二阶段,可以将其应用于现有的一阶段检测器,以始终如一地提高检测性能。广泛的实验表明,图R-CNN的表现优于最新的3D检测模型,而Kitti和Waymo Open DataSet的差距很大。我们在Kitti Bev汽车检测排行榜上排名第一。代码将在\ url {https://github.com/nightmare-n/graphrcnn}上找到。
translated by 谷歌翻译
最近,融合了激光雷达点云和相机图像,提高了3D对象检测的性能和稳健性,因为这两种方式自然具有强烈的互补性。在本文中,我们通过引入新型级联双向融合〜(CB融合)模块和多模态一致性〜(MC)损耗来提出用于多模态3D对象检测的EPNet ++。更具体地说,所提出的CB融合模块提高点特征的丰富语义信息,以级联双向交互融合方式具有图像特征,导致更全面且辨别的特征表示。 MC损失明确保证预测分数之间的一致性,以获得更全面且可靠的置信度分数。基蒂,JRDB和Sun-RGBD数据集的实验结果展示了通过最先进的方法的EPNet ++的优越性。此外,我们强调一个关键但很容易被忽视的问题,这是探讨稀疏场景中的3D探测器的性能和鲁棒性。广泛的实验存在,EPNet ++优于现有的SOTA方法,在高稀疏点云壳中具有显着的边距,这可能是降低LIDAR传感器的昂贵成本的可用方向。代码将来会发布。
translated by 谷歌翻译
实时和高性能3D对象检测对于自动驾驶至关重要。最近表现最佳的3D对象探测器主要依赖于基于点或基于3D Voxel的卷积,这两者在计算上均无效地部署。相比之下,基于支柱的方法仅使用2D卷积,从而消耗了较少的计算资源,但它们的检测准确性远远落后于基于体素的对应物。在本文中,通过检查基于支柱和体素的探测器之间的主要性能差距,我们开发了一个实时和高性能的柱子检测器,称为Pillarnet。提出的柱子由一个强大的编码网络组成,用于有效的支柱特征学习,用于空间语义特征融合的颈网和常用的检测头。仅使用2D卷积,Pillarnet具有可选的支柱尺寸的灵活性,并与经典的2D CNN骨架兼容,例如VGGNET和RESNET.ADITIONICLY,Pillarnet受益于我们设计的方向iOu decoupled iou Recressions you Recressions损失以及IOU Aware Pareace Predication Prediction Predictight offication Branch。大规模Nuscenes数据集和Waymo Open数据集的广泛实验结果表明,在有效性和效率方面,所提出的Pillarnet在最新的3D检测器上表现良好。源代码可在https://github.com/agent-sgs/pillarnet.git上找到。
translated by 谷歌翻译
LiDAR-based 3D Object detectors have achieved impressive performances in many benchmarks, however, multisensors fusion-based techniques are promising to further improve the results. PointPainting, as a recently proposed framework, can add the semantic information from the 2D image into the 3D LiDAR point by the painting operation to boost the detection performance. However, due to the limited resolution of 2D feature maps, severe boundary-blurring effect happens during re-projection of 2D semantic segmentation into the 3D point clouds. To well handle this limitation, a general multimodal fusion framework MSF has been proposed to fuse the semantic information from both the 2D image and 3D points scene parsing results. Specifically, MSF includes three main modules. First, SOTA off-the-shelf 2D/3D semantic segmentation approaches are employed to generate the parsing results for 2D images and 3D point clouds. The 2D semantic information is further re-projected into the 3D point clouds with calibrated parameters. To handle the misalignment between the 2D and 3D parsing results, an AAF module is proposed to fuse them by learning an adaptive fusion score. Then the point cloud with the fused semantic label is sent to the following 3D object detectors. Furthermore, we propose a DFF module to aggregate deep features in different levels to boost the final detection performance. The effectiveness of the framework has been verified on two public large-scale 3D object detection benchmarks by comparing with different baselines. The experimental results show that the proposed fusion strategies can significantly improve the detection performance compared to the methods using only point clouds and the methods using only 2D semantic information. Most importantly, the proposed approach significantly outperforms other approaches and sets new SOTA results on the nuScenes testing benchmark.
translated by 谷歌翻译
近年来,由于深度学习技术的发展,LiDar Point Clouds的3D对象检测取得了长足的进步。尽管基于体素或基于点的方法在3D对象检测中很受欢迎,但它们通常涉及耗时的操作,例如有关体素的3D卷积或点之间的球查询,从而使所得网络不适合时间关键应用程序。另一方面,基于2D视图的方法具有较高的计算效率,而通常比基于体素或基于点的方法获得的性能低。在这项工作中,我们提出了一个基于实时视图的单阶段3D对象检测器,即CVFNET完成此任务。为了在苛刻的效率条件下加强跨视图的学习,我们的框架提取了不同视图的特征,并以有效的渐进式方式融合了它们。我们首先提出了一个新颖的点范围特征融合模块,该模块在多个阶段深入整合点和范围视图特征。然后,当将所获得的深点视图转换为鸟类视图时,特殊的切片柱旨在很好地维护3D几何形状。为了更好地平衡样品比率,提出了一个稀疏的柱子检测头,将检测集中在非空网上。我们对流行的Kitti和Nuscenes基准进行了实验,并以准确性和速度来实现最先进的性能。
translated by 谷歌翻译
Fusing the camera and LiDAR information has become a de-facto standard for 3D object detection tasks. Current methods rely on point clouds from the LiDAR sensor as queries to leverage the feature from the image space. However, people discovered that this underlying assumption makes the current fusion framework infeasible to produce any prediction when there is a LiDAR malfunction, regardless of minor or major. This fundamentally limits the deployment capability to realistic autonomous driving scenarios. In contrast, we propose a surprisingly simple yet novel fusion framework, dubbed BEVFusion, whose camera stream does not depend on the input of LiDAR data, thus addressing the downside of previous methods. We empirically show that our framework surpasses the state-of-the-art methods under the normal training settings. Under the robustness training settings that simulate various LiDAR malfunctions, our framework significantly surpasses the state-of-the-art methods by 15.7% to 28.9% mAP. To the best of our knowledge, we are the first to handle realistic LiDAR malfunction and can be deployed to realistic scenarios without any post-processing procedure. The code is available at https://github.com/ADLab-AutoDrive/BEVFusion.
translated by 谷歌翻译
对于许多应用程序,包括自动驾驶,机器人抓握和增强现实,单眼3D对象检测是一项基本但非常重要的任务。现有的领先方法倾向于首先估算输入图像的深度,并基于点云检测3D对象。该例程遭受了深度估计和对象检测之间固有的差距。此外,预测误差积累也会影响性能。在本文中,提出了一种名为MonopCN的新方法。引入单频道的洞察力是,我们建议在训练期间模拟基于点云的探测器的特征学习行为。因此,在推理期间,学习的特征和预测将与基于点云的检测器相似。为了实现这一目标,我们建议一个场景级仿真模块,一个ROI级别的仿真模块和一个响应级仿真模块,这些模块逐渐用于检测器的完整特征学习和预测管道。我们将我们的方法应用于著名的M3D-RPN检测器和CADDN检测器,并在Kitti和Waymo Open数据集上进行了广泛的实验。结果表明,我们的方法始终提高不同边缘的不同单眼探测器的性能,而无需更改网络体系结构。我们的方法最终达到了最先进的性能。
translated by 谷歌翻译
现有的最佳3D对象检测器通常依赖于多模式融合策略。但是,由于忽略了特定于模式的有用信息,因此从根本上限制了该设计,并最终阻碍了模型性能。为了解决这一局限性,在这项工作中,我们介绍了一种新型的模式相互作用策略,在该策略中,在整个过程中学习和维护单个单模式表示,以使其在物体检测过程中被利用其独特特征。为了实现这一建议的策略,我们设计了一个深层互动体系结构,其特征是多模式代表性交互编码器和多模式预测交互解码器。大规模Nuscenes数据集的实验表明,我们所提出的方法经常超过所有先前的艺术。至关重要的是,我们的方法在竞争激烈的Nuscenes对象检测排行榜上排名第一。
translated by 谷歌翻译
人的大脑可以毫不费力地识别和定位对象,而基于激光雷达点云的当前3D对象检测方法仍然报告了较低的性能,以检测闭塞和远处的对象:点云的外观由于遮挡而变化很大,并且在沿线的固有差异沿点固有差异变化。传感器的距离。因此,设计功能表示对此类点云至关重要。受到人类联想识别的启发,我们提出了一个新颖的3D检测框架,该框架通过域的适应来使对象完整特征。我们弥合感知域之间的差距,其中特征是从具有亚最佳表示的真实场景中得出的,以及概念域,其中功能是从由不批准对象组成的增强场景中提取的,并具有丰富的详细信息。研究了一种可行的方法,可以在没有外部数据集的情况下构建概念场景。我们进一步介绍了一个基于注意力的重新加权模块,该模块可适应地增强更翔实区域的特征。该网络的功能增强能力将被利用,而无需在推理过程中引入额外的成本,这是各种3D检测框架中的插件。我们以准确性和速度都在Kitti 3D检测基准上实现了新的最先进性能。关于Nuscenes和Waymo数据集的实验也验证了我们方法的多功能性。
translated by 谷歌翻译
尽管收集了越来越多的数据集用于培训3D对象检测模型,但在LiDar扫描上注释3D盒仍然需要大量的人类努力。为了自动化注释并促进了各种自定义数据集的生产,我们提出了一个端到端的多模式变压器(MTRANS)自动标签器,该标签既利用LIDAR扫描和图像,以生成来自弱2D边界盒的精确的3D盒子注释。为了减轻阻碍现有自动标签者的普遍稀疏性问题,MTRAN通过基于2D图像信息生成新的3D点来致密稀疏点云。凭借多任务设计,MTRANS段段前景/背景片段,使LIDAR POINT CLUENS云密布,并同时回归3D框。实验结果验证了MTRAN对提高生成标签质量的有效性。通过丰富稀疏点云,我们的方法分别在Kitti中度和硬样品上获得了4.48 \%和4.03 \%更好的3D AP,而不是最先进的自动标签器。也可以扩展Mtrans以提高3D对象检测的准确性,从而在Kitti硬样品上产生了显着的89.45 \%AP。代码位于\ url {https://github.com/cliu2/mtrans}。
translated by 谷歌翻译
我们提出了DeepFusion,这是一种模块化的多模式结构,可在不同组合中以3D对象检测为融合激光雷达,相机和雷达。专门的功能提取器可以利用每种模式,并且可以轻松交换,从而使该方法变得简单而灵活。提取的特征被转化为鸟眼视图,作为融合的共同表示。在特征空间中融合方式之前,先进行空间和语义对齐。最后,检测头利用丰富的多模式特征,以改善3D检测性能。 LIDAR相机,激光摄像头雷达和摄像头融合的实验结果显示了我们融合方法的灵活性和有效性。在此过程中,我们研究了高达225米的遥远汽车检测的很大程度上未开发的任务,显示了激光摄像机融合的好处。此外,我们研究了3D对象检测的LIDAR点所需的密度,并在对不利天气条件的鲁棒性示例中说明了含义。此外,对我们的摄像头融合的消融研究突出了准确深度估计的重要性。
translated by 谷歌翻译
3D object detection from LiDAR point cloud is a challenging problem in 3D scene understanding and has many practical applications. In this paper, we extend our preliminary work PointRCNN to a novel and strong point-cloud-based 3D object detection framework, the part-aware and aggregation neural network (Part-A 2 net). The whole framework consists of the part-aware stage and the part-aggregation stage. Firstly, the part-aware stage for the first time fully utilizes free-of-charge part supervisions derived from 3D ground-truth boxes to simultaneously predict high quality 3D proposals and accurate intra-object part locations. The predicted intra-object part locations within the same proposal are grouped by our new-designed RoI-aware point cloud pooling module, which results in an effective representation to encode the geometry-specific features of each 3D proposal. Then the part-aggregation stage learns to re-score the box and refine the box location by exploring the spatial relationship of the pooled intra-object part locations. Extensive experiments are conducted to demonstrate the performance improvements from each component of our proposed framework. Our Part-A 2 net outperforms all existing 3D detection methods and achieves new state-of-the-art on KITTI 3D object detection dataset by utilizing only the LiDAR point cloud data. Code is available at https://github.com/sshaoshuai/PointCloudDet3D.
translated by 谷歌翻译
具有多传感器的3D对象检测对于自主驾驶和机器人技术的准确可靠感知系统至关重要。现有的3D探测器通过采用两阶段范式来显着提高准确性,这仅依靠激光点云进行3D提案的细化。尽管令人印象深刻,但点云的稀疏性,尤其是对于遥远的点,使得仅激光雷达的完善模块难以准确识别和定位对象。要解决这个问题,我们提出了一种新颖的多模式两阶段方法FusionRcnn,有效,有效地融合了感兴趣区域(ROI)的点云和摄像头图像。 FusionRcnn自适应地整合了LiDAR的稀疏几何信息和统一注意机制中相机的密集纹理信息。具体而言,它首先利用RoiPooling获得具有统一大小的图像集,并通过在ROI提取步骤中的建议中采样原始点来获取点设置;然后利用模式内的自我注意力来增强域特异性特征,此后通过精心设计的跨注意事项融合了来自两种模态的信息。FusionRCNN从根本上是插件,并支持不同的单阶段方法与不同的单阶段方法。几乎没有建筑变化。对Kitti和Waymo基准测试的广泛实验表明,我们的方法显着提高了流行探测器的性能。可取,FusionRCNN在Waymo上的FusionRCNN显着提高了强大的第二基线,而Waymo上的MAP则超过6.14%,并且优于竞争两阶段方法的表现。代码将很快在https://github.com/xxlbigbrother/fusion-rcnn上发布。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
当前仅激光雷达的3D检测方法不可避免地会遭受点云的稀疏性。提出了许多多模式方法来减轻此问题,而图像和点云的不同表示使它们很难融合,从而导致次优性能。在本文中,我们提出了一个新颖的多模式框架SFD(稀疏的保险丝密度),该框架利用了从深度完成生成的伪点云来解决上述问题。与先前的工作不同,我们提出了一种新的ROI Fusion策略3D-GAF(3D网格的专注融合),以更全面地使用来自不同类型的点云的信息。具体而言,3D-GAF以网格的细心方式从两点云中融合了3D ROI功能,这更细粒度,更精确。此外,我们提出了一种登录(同步增强),以使我们的多模式框架能够利用针对仅激光雷达方法的所有数据增强方法。最后,我们为伪点云自定义有效,有效的特征提取器CPCONV(色点卷积)。它可以同时探索伪点云的2D图像特征和3D几何特征。我们的方法在Kitti Car 3D对象检测排行榜上排名最高,证明了我们的SFD的有效性。代码可在https://github.com/littlepey/sfd上找到。
translated by 谷歌翻译
与LIDAR相比,相机和雷达传感器在成本,可靠性和维护方面具有显着优势。现有的融合方法通常融合了结果级别的单个模式的输出,称为后期融合策略。这可以通过使用现成的单传感器检测算法受益,但是晚融合无法完全利用传感器的互补特性,因此尽管相机雷达融合的潜力很大,但性能有限。在这里,我们提出了一种新颖的提案级早期融合方法,该方法有效利用了相机和雷达的空间和上下文特性,用于3D对象检测。我们的融合框架首先将图像建议与极坐标系中的雷达点相关联,以有效处理坐标系和空间性质之间的差异。将其作为第一阶段,遵循连续的基于交叉注意的特征融合层在相机和雷达之间自适应地交换时尚信息,从而导致强大而专心的融合。我们的摄像机雷达融合方法可在Nuscenes测试集上获得最新的41.1%地图,而NDS则达到52.3%,比仅摄像机的基线高8.7和10.8点,并在竞争性能上提高竞争性能LIDAR方法。
translated by 谷歌翻译