We release a new codebase version of the BEVDet, dubbed branch dev2.0. With dev2.0, we propose BEVPoolv2 upgrade the view transformation process from the perspective of engineering optimization, making it free from a huge burden in both calculation and storage aspects. It achieves this by omitting the calculation and preprocessing of the large frustum feature. As a result, it can be processed within 0.82 ms even with a large input resolution of 640x1600, which is 15.1 times the previous fastest implementation. Besides, it is also less cache consumptive when compared with the previous implementation, naturally as it no longer needs to store the large frustum feature. Last but not least, this also makes the deployment to the other backend handy. We offer an example of deployment to the TensorRT backend in branch dev2.0 and show how fast the BEVDet paradigm can be processed on it. Other than BEVPoolv2, we also select and integrate some substantial progress that was proposed in the past year. As an example configuration, BEVDet4D-R50-Depth-CBGS scores 52.3 NDS on the NuScenes validation set and can be processed at a speed of 16.4 FPS with the PyTorch backend. The code has been released to facilitate the study on https://github.com/HuangJunJie2017/BEVDet/tree/dev2.0.
translated by 谷歌翻译
自动驾驶可以感知其周围的决策,这是视觉感知中最复杂的情​​况之一。范式创新在解决2D对象检测任务方面的成功激发了我们寻求优雅,可行和可扩展的范式,以从根本上推动该领​​域的性能边界。为此,我们在本文中贡献了BEVDET范式。 BEVDET在鸟眼视图(BEV)中执行3D对象检测,其中大多数目标值被定义并可以轻松执行路线计划。我们只是重复使用现有模块来构建其框架,但通过构建独家数据增强策略并升级非最大抑制策略来实质性地发展其性能。在实验中,BEVDET在准确性和时间效率之间提供了极好的权衡。作为快速版本,nuscenes val设置的BEVDET微小分数为31.2%的地图和39.2%的NDS。它与FCOS3D相当,但仅需要11%的计算预算为215.3 GFLOPS,并且在15.6 fps的速度中运行的速度快9.2倍。另一个称为BEVDET基本的高精度版本得分为39.3%的地图和47.2%的NDS,大大超过了所有已发布的结果。具有可比的推理速度,它超过了 +9.8%地图和 +10.0%ND的大幅度的FCOS3D。源代码可在https://github.com/huangjunjie2017/bevdet上公开研究。
translated by 谷歌翻译
单帧数据包含有限信息,该信息限制了现有的基于视觉的多相机3D对象检测范例的性能。为了从根本上推动该区域的性能边界,提出了一种新颖的范式BEVDET4D,以将可扩展的BEVDET范式从仅空间的3D空间提升到空间 - 时空4D空间。我们使用一些修改来升级幼稚的BEVDET框架,仅将上一个帧中的功能与当前帧中的相应框架融合在一起。通过这种方式,借助额外的计算预算,我们可以通过查询和比较两个候选功能来访问临时提示。除此之外,我们通过消除学习目标中的自我运动和时间的因素来简化速度预测的任务。结果,具有鲁棒泛化性能的BEVDET4D将速度误差降低到-62.9%。这使得基于视觉的方法首次与在这方面依赖激光雷达或雷达的方法相提并论。在挑战基准Nuscenes上,我们报告了54.5%NDS的新记录,其高性能配置称为BEVDET4D-BASE,它超过了先前领先的方法BEVDET基本底座,而BEVDET基本却 + +7.3%NDS。源代码可在https://github.com/huangjunjie2017/bevdet上公开研究。
translated by 谷歌翻译
在鸟眼中学习强大的表现(BEV),以进行感知任务,这是趋势和吸引行业和学术界的广泛关注。大多数自动驾驶算法的常规方法在正面或透视视图中执行检测,细分,跟踪等。随着传感器配置变得越来越复杂,从不同的传感器中集成了多源信息,并在统一视图中代表功能至关重要。 BEV感知继承了几个优势,因为代表BEV中的周围场景是直观和融合友好的。对于BEV中的代表对象,对于随后的模块,如计划和/或控制是最可取的。 BEV感知的核心问题在于(a)如何通过从透视视图到BEV来通过视图转换来重建丢失的3D信息; (b)如何在BEV网格中获取地面真理注释; (c)如何制定管道以合并来自不同来源和视图的特征; (d)如何适应和概括算法作为传感器配置在不同情况下各不相同。在这项调查中,我们回顾了有关BEV感知的最新工作,并对不同解决方案进行了深入的分析。此外,还描述了该行业的BEV方法的几种系统设计。此外,我们推出了一套完整的实用指南,以提高BEV感知任务的性能,包括相机,激光雷达和融合输入。最后,我们指出了该领域的未来研究指示。我们希望该报告能阐明社区,并鼓励对BEV感知的更多研究。我们保留一个活跃的存储库来收集最新的工作,并在https://github.com/openperceptionx/bevperception-survey-recipe上提供一包技巧的工具箱。
translated by 谷歌翻译
在深度感知的固有歧义的范围内,现代相机的3D对象检测方法属于性能瓶颈。从直觉上讲,利用时间多视角立体声(MVS)技术是解决这种歧义的自然知识。但是,在适用于3D对象检测场景时,MV的传统尝试在两个方面存在缺陷:1)所有观点之间的亲和力测量遭受昂贵的计算成本; 2)很难处理经常移动物体的室外场景。为此,我们引入了一种有效的时间立体声方法,以动态选择匹配候选者的尺度,从而显着减少计算开销。更进一步,我们设计了一种迭代算法,以更新更有价值的候选人,使其适应移动候选人。我们将我们提出的方法实例化,以进行多视图3D检测器,即Bevstereo。 Bevstereo在Nuscenes数据集的仅相机轨道上实现了新的最先进的性能(即52.5%地图和61.0%NDS)。同时,广泛的实验反映了我们的方法比当代MVS方法更好地处理复杂的室外场景。代码已在https://github.com/megvii astection/bevstereo上发布。
translated by 谷歌翻译
在自主驾驶中,在使用深神经网络的爆炸中爆炸用于感知,预测和规划任务。由于自主车辆(AVS)更接近生产,多模态传感器输入和具有不同传感器平台的异构车队在该行业中变得越来越普遍。然而,神经网络架构通常是针对特定的传感器平台,并且对输入的变化并不稳健,使得缩放和模型部署的问题特别困难。此外,大多数玩家仍然将软件和硬件的问题视为完全独立的问题。我们提出了一个新的终端架构,广义传感器融合(GSF),其设计成使得传感器输入和目标任务都是模块化和可修改的。这使AV系统设计人员能够轻松地使用不同的传感器配置和方法进行实验,并使用在大型工程组织中共享的相同型号开辟了在异构船队上部署的能力。使用该系统,我们报告了实验结果,我们展示了昂贵的高密度(HD)激光雷达传感器的近似奇偶阶段,具有3D对象检测任务中的廉价低密度(LD)LIDAR加相机设置。这为行业铺平了道路,共同设计硬件和软件架构以及具有异质配置的大船队。
translated by 谷歌翻译
快速的基于立体声的3D对象探测器最近在推理时间感到很大进展。然而,它们的精确度远远落后于高精度的方法。我们认为主要原因是快速立体声方法中缺失或差的3D几何特征表示。为了解决这个问题,我们提出了一个有效的几何特征生成网络(EGFN)。我们的EGFN的关键是一种有效且有效的3D几何特征表示(EGFR)模块。在EGFR模块中,首先生成轻量级成本体积特征,然后将其有效地转换为3D空间,并且最后进行图像和3D空间中的多尺度特征,以获得3D几何特征:增强的轻量级voxel特色。此外,我们介绍了一种新的多尺度知识蒸馏策略,以指导多尺度3D几何特征学习。公共基准测试集的实验结果表明,建议的EGFN优于Yolostsereo3D,先进的快速方法,在Map $ 5.16 \%上的$ _ {3d} $以仅需12毫秒的成本,因此实现了更好的权衡立体声3D对象检测的准确性和效率。我们的代码将公开提供。
translated by 谷歌翻译
鉴于其经济性与多传感器设置相比,从单眼输入中感知的3D对象对于机器人系统至关重要。它非常困难,因为单个图像无法提供预测绝对深度值的任何线索。通过双眼方法进行3D对象检测,我们利用了相机自我运动提供的强几何结构来进行准确的对象深度估计和检测。我们首先对此一般的两视案例进行了理论分析,并注意两个挑战:1)来自多个估计的累积错误,这些估计使直接预测棘手; 2)由静态摄像机和歧义匹配引起的固有难题。因此,我们建立了具有几何感知成本量的立体声对应关系,作为深度估计的替代方案,并以单眼理解进一步补偿了它,以解决第二个问题。我们的框架(DFM)命名为深度(DFM),然后使用已建立的几何形状将2D图像特征提升到3D空间并检测到其3D对象。我们还提出了一个无姿势的DFM,以使其在摄像头不可用时可用。我们的框架在Kitti基准测试上的优于最先进的方法。详细的定量和定性分析也验证了我们的理论结论。该代码将在https://github.com/tai-wang/depth-from-motion上发布。
translated by 谷歌翻译
学习准确的深度对于多视图3D对象检测至关重要。最近的方法主要是从单眼图像中学习深度,由于单眼深度学习的性质不足,这会面临固有的困难。在这项工作中,我们提出了一种新颖的环绕时间立体声(STS)技术,而不是使用唯一的单眼深度方法,而是利用跨时间之间的几何对应关系来促进准确的深度学习。具体而言,我们将自我车辆周围所有相机的视野视为统一的视图,即环绕浏览量,并在其上进行暂时立体声匹配。利用与STS不同框架之间的几何对应关系并与单眼深度结合在一起,以产生最终的深度预测。关于Nuscenes的综合实验表明,STS极大地提高了3D检测能力,特别是对于中距离和长距离对象。在带有RESNET-50骨架的BEVDEPTH上,STS分别提高了MAP和NDS,分别提高了2.6%和1.4%。当使用较大的主链和较大的图像分辨率时,观察到一致的改进,证明了其有效性
translated by 谷歌翻译
基于LIDAR的3D对象检测的先前工作主要集中在单帧范式上。在本文中,我们建议通过利用多个帧的时间信息(即点云视频)来检测3D对象。我们从经验上将时间信息分为短期和长期模式。为了编码短期数据,我们提出了一个网格消息传递网络(GMPNET),该网络将每个网格(即分组点)视为节点,并用邻居网格构造K-NN图。为了更新网格的功能,gmpnet迭代从其邻居那里收集信息,从而从附近的框架中挖掘了运动提示。为了进一步汇总长期框架,我们提出了一个细心的时空变压器GRU(AST-GRU),其中包含空间变压器注意(STA)模块和颞变压器注意(TTA)模块。 STA和TTA增强了香草gru,以专注于小物体并更好地对齐运动对象。我们的整体框架支持点云中的在线和离线视频对象检测。我们基于普遍的基于锚和锚的探测器实现算法。关于挑战性的Nuscenes基准的评估结果显示了我们方法的出色表现,在提交论文时,在没有任何铃铛和哨声的情况下在排行榜上获得了第一个。
translated by 谷歌翻译
以视觉为中心的BEV感知由于其固有的优点,最近受到行业和学术界的关注,包括展示世界自然代表和融合友好。随着深度学习的快速发展,已经提出了许多方法来解决以视觉为中心的BEV感知。但是,最近没有针对这个小说和不断发展的研究领域的调查。为了刺激其未来的研究,本文对以视觉为中心的BEV感知及其扩展进行了全面调查。它收集并组织了最近的知识,并对常用算法进行了系统的综述和摘要。它还为几项BEV感知任务提供了深入的分析和比较结果,从而促进了未来作品的比较并激发了未来的研究方向。此外,还讨论了经验实现细节并证明有利于相关算法的开发。
translated by 谷歌翻译
伪LIDAR表示的建议显着缩小了基于视觉的基于视觉激光痛的3D对象检测之间的差距。但是,当前的研究仅专注于通过利用复杂且耗时的神经网络来推动伪LIDAR的准确性提高。很少探索伪LIDAR代表的深刻特征来获得促进机会。在本文中,我们深入研究伪激光雷达表示,并认为3D对象检测的性能并不完全取决于高精度立体声深度估计。我们证明,即使对于不可靠的深度估计,通过适当的数据处理和精炼,它也可以达到可比的3D对象检测准确性。有了这一发现,我们进一步表明了使用伪大部分系统中快速但不准确的立体声匹配算法来实现低潜伏期响应的可能性。在实验中,我们开发了一个具有功能较低的立体声匹配预测指标的系统,并采用了提出的改进方案来提高准确性。对KITTI基准测试的评估表明,所提出的系统仅使用23毫秒的计算来实现最先进方法的竞争精度,这表明它是部署到真实CAR-HOLD应用程序的合适候选者。
translated by 谷歌翻译
语义分割是将类标签分配给图像中每个像素的问题,并且是自动车辆视觉堆栈的重要组成部分,可促进场景的理解和对象检测。但是,许多表现最高的语义分割模型非常复杂且笨拙,因此不适合在计算资源有限且低延迟操作的板载自动驾驶汽车平台上部署。在这项调查中,我们彻底研究了旨在通过更紧凑,更有效的模型来解决这种未对准的作品,该模型能够在低内存嵌入式系统上部署,同时满足实时推理的限制。我们讨论了该领域中最杰出的作品,根据其主要贡献将它们置于分类法中,最后我们评估了在一致的硬件和软件设置下,所讨论模型的推理速度,这些模型代表了具有高端的典型研究环境GPU和使用低内存嵌入式GPU硬件的现实部署方案。我们的实验结果表明,许多作品能够在资源受限的硬件上实时性能,同时说明延迟和准确性之间的一致权衡。
translated by 谷歌翻译
LiDAR-based 3D Object detectors have achieved impressive performances in many benchmarks, however, multisensors fusion-based techniques are promising to further improve the results. PointPainting, as a recently proposed framework, can add the semantic information from the 2D image into the 3D LiDAR point by the painting operation to boost the detection performance. However, due to the limited resolution of 2D feature maps, severe boundary-blurring effect happens during re-projection of 2D semantic segmentation into the 3D point clouds. To well handle this limitation, a general multimodal fusion framework MSF has been proposed to fuse the semantic information from both the 2D image and 3D points scene parsing results. Specifically, MSF includes three main modules. First, SOTA off-the-shelf 2D/3D semantic segmentation approaches are employed to generate the parsing results for 2D images and 3D point clouds. The 2D semantic information is further re-projected into the 3D point clouds with calibrated parameters. To handle the misalignment between the 2D and 3D parsing results, an AAF module is proposed to fuse them by learning an adaptive fusion score. Then the point cloud with the fused semantic label is sent to the following 3D object detectors. Furthermore, we propose a DFF module to aggregate deep features in different levels to boost the final detection performance. The effectiveness of the framework has been verified on two public large-scale 3D object detection benchmarks by comparing with different baselines. The experimental results show that the proposed fusion strategies can significantly improve the detection performance compared to the methods using only point clouds and the methods using only 2D semantic information. Most importantly, the proposed approach significantly outperforms other approaches and sets new SOTA results on the nuScenes testing benchmark.
translated by 谷歌翻译
在本文中,我们基于我们对多视图立体声(MVS)中的特征匹配的探索来呈现TransVSNet。我们将MVS模拟返回其特征匹配任务的性质,因此提出了一个强大的功能匹配变换器(FMT),以利用(自我)和(交叉)关注(交叉)在图像内和跨越图像中聚合的长程上下文信息。为了便于更好地调整FMT,我们利用自适应接收领域(ARF)模块,以确保在特征范围内平滑过境,并使用特征途径桥接不同阶段,以通过不同尺度的转换特征和梯度。此外,我们应用配对特征相关性以测量特征之间的相似性,并采用歧义降低焦损,以加强监管。据我们所知,TransmVSNet首次尝试将变压器利用到MV的任务。因此,我们的方法在DTU数据集,坦克和寺庙基准测试和BlendedMVS数据集中实现了最先进的性能。我们的方法代码将在https://github.com/megviirobot/transmvsnet中提供。
translated by 谷歌翻译
Real-time monocular 3D reconstruction is a challenging problem that remains unsolved. Although recent end-to-end methods have demonstrated promising results, tiny structures and geometric boundaries are hardly captured due to their insufficient supervision neglecting spatial details and oversimplified feature fusion ignoring temporal cues. To address the problems, we propose an end-to-end 3D reconstruction network SST, which utilizes Sparse estimated points from visual SLAM system as additional Spatial guidance and fuses Temporal features via a novel cross-modal attention mechanism, achieving more detailed reconstruction results. We propose a Local Spatial-Temporal Fusion module to exploit more informative spatial-temporal cues from multi-view color information and sparse priors, as well a Global Spatial-Temporal Fusion module to refine the local TSDF volumes with the world-frame model from coarse to fine. Extensive experiments on ScanNet and 7-Scenes demonstrate that SST outperforms all state-of-the-art competitors, whilst keeping a high inference speed at 59 FPS, enabling real-world applications with real-time requirements.
translated by 谷歌翻译
实时和高性能3D对象检测对于自动驾驶至关重要。最近表现最佳的3D对象探测器主要依赖于基于点或基于3D Voxel的卷积,这两者在计算上均无效地部署。相比之下,基于支柱的方法仅使用2D卷积,从而消耗了较少的计算资源,但它们的检测准确性远远落后于基于体素的对应物。在本文中,通过检查基于支柱和体素的探测器之间的主要性能差距,我们开发了一个实时和高性能的柱子检测器,称为Pillarnet。提出的柱子由一个强大的编码网络组成,用于有效的支柱特征学习,用于空间语义特征融合的颈网和常用的检测头。仅使用2D卷积,Pillarnet具有可选的支柱尺寸的灵活性,并与经典的2D CNN骨架兼容,例如VGGNET和RESNET.ADITIONICLY,Pillarnet受益于我们设计的方向iOu decoupled iou Recressions you Recressions损失以及IOU Aware Pareace Predication Prediction Predictight offication Branch。大规模Nuscenes数据集和Waymo Open数据集的广泛实验结果表明,在有效性和效率方面,所提出的Pillarnet在最新的3D检测器上表现良好。源代码可在https://github.com/agent-sgs/pillarnet.git上找到。
translated by 谷歌翻译
自动驾驶汽车广泛使用屋顶旋转的LIDAR传感器,推动了3D点序列实时处理的需求。但是,大多数激光雷达语义细分数据集和算法将这些收购分为$ 360^\ circ $框架,从而导致收购潜伏期与现实的实时应用程序和评估不符。我们通过两个关键贡献来解决这个问题。首先,我们介绍Helixnet,这是一个10亿美元的点数据集,具有细粒度的标签,时间戳和传感器旋转信息,可以准确评估分割算法的实时准备就绪。其次,我们提出了helix4d,这是一种专门设计用于旋转激光雷达点序列的紧凑而有效的时空变压器结构。 Helix4D在采集切片上运行,对应于传感器的全部旋转的一部分,从而大大降低了总延迟。我们介绍了Helixnet和Semantickitti上几种最先进模型的性能和实时准备的广泛基准。 Helix4D与最佳的分割算法达到准确性,而在延迟和型号$ 50 \ times $中,降低了$ 5 \ times $。代码和数据可在以下网址获得:https://romainloiseau.fr/helixnet
translated by 谷歌翻译
Fusing the camera and LiDAR information has become a de-facto standard for 3D object detection tasks. Current methods rely on point clouds from the LiDAR sensor as queries to leverage the feature from the image space. However, people discovered that this underlying assumption makes the current fusion framework infeasible to produce any prediction when there is a LiDAR malfunction, regardless of minor or major. This fundamentally limits the deployment capability to realistic autonomous driving scenarios. In contrast, we propose a surprisingly simple yet novel fusion framework, dubbed BEVFusion, whose camera stream does not depend on the input of LiDAR data, thus addressing the downside of previous methods. We empirically show that our framework surpasses the state-of-the-art methods under the normal training settings. Under the robustness training settings that simulate various LiDAR malfunctions, our framework significantly surpasses the state-of-the-art methods by 15.7% to 28.9% mAP. To the best of our knowledge, we are the first to handle realistic LiDAR malfunction and can be deployed to realistic scenarios without any post-processing procedure. The code is available at https://github.com/ADLab-AutoDrive/BEVFusion.
translated by 谷歌翻译
3D视觉感知任务,包括基于多相机图像的3D检测和MAP分割,对于自主驾驶系统至关重要。在这项工作中,我们提出了一个称为BeVformer的新框架,该框架以时空变压器学习统一的BEV表示,以支持多个自主驾驶感知任务。简而言之,Bevormer通过通过预定义的网格形BEV查询与空间和时间空间进行交互来利用空间和时间信息。为了汇总空间信息,我们设计了空间交叉注意,每个BEV查询都从相机视图中从感兴趣的区域提取了空间特征。对于时间信息,我们提出暂时的自我注意力,以将历史bev信息偶尔融合。我们的方法在Nuscenes \ texttt {test} set上,以NDS度量为单位达到了新的最新56.9 \%,该设置比以前的最佳艺术高9.0分,并且与基于LIDAR的盆地的性能相当。我们进一步表明,BeVormer明显提高了速度估计的准确性和在低可见性条件下对象的回忆。该代码可在\ url {https://github.com/zhiqi-li/bevformer}中获得。
translated by 谷歌翻译