复杂查询应答(CQA)是知识图中的一个重要推理任务。目前已经证明能够从原子操作员概括到更复杂的公式中的当前CQA学习模型,这可以被视为组合概括性。在本文中,我们呈现EFO-1-QA,通过包括301种不同的查询类型来基准CQA模型的组合概括性的EFO-1-QA来基准,这是比现有数据集大的20倍。此外,我们的工作首次提供基准来评估和分析不同运营商和正常形式的影响,通过使用(a)7个选择的操作系统和(b)9形式的复杂查询。具体地,我们提供了两个常用的运营商的组合概括性的详细研究,即投影和交叉点,并证明了鉴于运营商的规范选择的疑问形式的影响。我们的代码和数据可以为基准CQA模型提供有效的管道。
translated by 谷歌翻译
多跳跃逻辑推理是在知识图(KGS)上学习领域的一个已建立问题。它涵盖了单跳连接预测以及其他更复杂的逻辑查询类型。现有的算法仅在经典的三重基图上运行,而现代KG经常采用超相关的建模范式。在此范式中,键入的边缘可能具有几对键值对,称为限定符,可为事实提供细粒度的环境。在查询中,此上下文修改了关系的含义,通常会减少答案集。经常在现实世界中的应用程序中观察到超相关的查询,并且现有的近似查询答案方法无法使用预选赛对。在这项工作中,我们弥合了这一差距,并将多跳的推理问题扩展到了超级关系的KG,允许解决这一新类型的复杂查询。在图形神经网络和查询嵌入技术的最新进展之下,我们研究了如何嵌入和回答超相关的连词查询。除此之外,我们还提出了一种回答此类查询并在我们的实验中证明的方法,即预选赛可以改善对各种查询模式的查询回答。
translated by 谷歌翻译
当前的最佳性能模型用于知识图推理(KGR)将几何学对象或概率分布引入嵌入实体,并将一阶逻辑(fol)查询引入低维矢量空间。它们可以总结为中心尺寸框架(点/框/锥,β/高斯分布等)。但是,它们具有有限的逻辑推理能力。而且很难概括到各种功能,因为中心和大小是一对一的约束,无法具有多个中心或尺寸。为了应对这些挑战,我们相反提出了一个名为“特征逻辑嵌入框架Flex”的新颖的KGR框架,这是第一个KGR框架,它不仅可以真正处理所有运营,包括连词,析取,否定,否定等等,而且还支持各种操作特征空间。具体而言,特征逻辑框架的逻辑部分是基于向量逻辑的,它自然地对所有FOL操作进行了建模。实验表明,FLEX在基准数据集上明显优于现有的最新方法。
translated by 谷歌翻译
推理是计算机的基本问题,并且在人工智能中深入研究。在本文中,我们专门针对回答知识图(KGS)的多跳逻辑查询。这是一项复杂的任务,因为在实际情况下,图形往往很大且不完整。以前的大多数作品都无法创建模型,这些模型接受了完整的一阶逻辑(fol)查询,其中包括负查询,并且只能处理有限的查询结构集。此外,大多数方法都呈现只能执行其制作的逻辑操作的逻辑运算符。我们介绍了一组模型,这些模型使用神经网络来创建单点矢量嵌入以回答查询。神经网络的多功能性允许该框架处理连词($ \ wedge $),脱节($ \ vee $)和否定($ \ neg $)运算符的框架查询。我们通过对众所周知的基准数据集进行了广泛的实验,通过实验证明了模型的性能。除了拥有更多多功能运营商外,模型还获得了10 \%的相对增加,而基于单点矢量嵌入的最佳性能状态和比原始方法的相对增加了30 \%。
translated by 谷歌翻译
在大规模不完整的知识图(kgs)上回答复杂的一阶逻辑(fol)查询是一项重要但挑战性的任务。最近的进步将逻辑查询和KG实体嵌入了相同的空间,并通过密集的相似性搜索进行查询。但是,先前研究中设计的大多数逻辑运算符不满足经典逻辑的公理系统,从而限制了其性能。此外,这些逻辑运算符被参数化,因此需要许多复杂的查询作为训练数据,在大多数现实世界中,这些数据通常很难收集甚至无法访问。因此,我们提出了Fuzzqe,这是一种基于模糊逻辑的逻辑查询嵌入框架,用于回答KGS上的查询。 Fuzzqe遵循模糊逻辑以原则性和无学习的方式定义逻辑运算符,在这种方式中,只有实体和关系嵌入才需要学习。 Fuzzqe可以从标记为训练的复杂逻辑查询中进一步受益。在两个基准数据集上进行的广泛实验表明,与最先进的方法相比,Fuzzqe在回答FOL查询方面提供了明显更好的性能。此外,只有KG链接预测训练的Fuzzqe可以实现与经过额外复杂查询数据训练的人的可比性能。
translated by 谷歌翻译
回答有关知识图(KG)的复杂查询是一项重要但具有挑战性的任务,因为在推理过程中存在KG不完整问题和级联错误。最近的查询嵌入(QE)方法将实体和关系嵌入kg中,并将一阶逻辑(fol)查询纳入一个低维空间,从而通过密集的相似性搜索来回答查询。但是,以前的作品主要集中在目标答案上,忽略了中间实体的实用性,这对于缓解逻辑查询答案中的级联错误问题至关重要。此外,这些方法通常是用自己的几何或分配嵌入设计的,以处理逻辑运算符,例如联合,交叉路口和否定,并牺牲了基本操作员的准确性 - 投影,他们无法吸收其他嵌入方法,以使其吸收其他嵌入方法楷模。在这项工作中,我们提出了一个神经和象征性的纠缠框架(ENESY),以进行复杂的查询答案,这使神经和象征性推理可以相互增强以减轻级联错误和kg不完整。 Enesy中的投影操作员可以是具有链接预测能力的任何嵌入方法,并且其他FOL操作员无需参数处理。随着神经和象征性推理的结果,合奏中的Enesy答案查询。 Enesy在几个基准上实现了SOTA性能,尤其是在培训模型的设置中,仅具有链接预测任务。
translated by 谷歌翻译
大型知识图(KGS)提供人类知识的结构化表示。然而,由于不可能包含所有知识,KGs通常不完整。基于现有事实的推理铺平了一种发现缺失事实的方法。在本文中,我们研究了了解完成缺失事实三胞胎的知识图表的推理的学习逻辑规则问题。学习逻辑规则将具有很强的解释性的模型以及概括到类似任务的能力。我们提出了一种称为MPLR的模型,可以改进现有模型以完全使用培训数据,并且考虑多目标方案。此外,考虑到缺乏评估模型表现和开采规则的质量,我们进一步提出了两名新颖的指标来帮助解决问题。实验结果证明我们的MPLR模型在五个基准数据集中优于最先进的方法。结果还证明了指标的有效性。
translated by 谷歌翻译
知识图表(kgs)以头部关系的形式捕获知识 - 尾部三元组,是许多AI系统中的重要组成部分。 KGS上有两个重要的推理任务:(1)单跳知识图完成,涉及预测公斤中的各个环节; (2),多跳推理,目标是预测哪个kg实体满足给定的逻辑查询。基于嵌入的方法通过首先计算每个实体和关系的嵌入来解决两个任务,然后使用它们形成预测。但是,现有可扩展的KG嵌入框架仅支持单跳知识图完成,并且不能应用于更具挑战性的多跳推理任务。在这里,我们呈现可扩展的多跳推理(SMORE),这是KGS中单跳和多跳推理的第一个总框架。使用单机略微闪烁可以在FreeBase KG(86米实体,338M边缘)中执行多跳推理,比以前考虑的KGs大1,500倍。粉刷运行时性能的关键是一种新的双向抑制采样,实现了在线培训数据生成的复杂性的平方根降低。此外,SMORE利用异步调度,基于CPU的数据采样,基于GPU的嵌入计算和频繁CPU - GPU IO。 Smore通过2.2倍提高了82倍的吞吐量(即,训练速度),以最小的GPU存储器要求(2GB用于训练86M节点FreeBase上的400微米嵌入),并达到与GPU的数量接近线性加速。此外,在更简单的单跳知识图形完成任务中,Smore实现了对单个GPU和多GPU设置的最先进框架的可比或更好的运行时间性能。
translated by 谷歌翻译
Formulating and answering logical queries is a standard communication interface for knowledge graphs (KGs). Alleviating the notorious incompleteness of real-world KGs, neural methods achieved impressive results in link prediction and complex query answering tasks by learning representations of entities, relations, and queries. Still, most existing query answering methods rely on transductive entity embeddings and cannot generalize to KGs containing new entities without retraining the entity embeddings. In this work, we study the inductive query answering task where inference is performed on a graph containing new entities with queries over both seen and unseen entities. To this end, we devise two mechanisms leveraging inductive node and relational structure representations powered by graph neural networks (GNNs). Experimentally, we show that inductive models are able to perform logical reasoning at inference time over unseen nodes generalizing to graphs up to 500% larger than training ones. Exploring the efficiency--effectiveness trade-off, we find the inductive relational structure representation method generally achieves higher performance, while the inductive node representation method is able to answer complex queries in the inference-only regime without any training on queries and scales to graphs of millions of nodes. Code is available at https://github.com/DeepGraphLearning/InductiveQE.
translated by 谷歌翻译
查询嵌入(QE) - 旨在嵌入实体和一阶逻辑(FOL)查询在低维空间中 - 在知识图表中的多跳推理中显示出强大的功率。最近,嵌入实体和具有几何形状的查询成为有希望的方向,因为几何形状可以自然地代表它们之间的答案和逻辑关系。然而,现有的基于几何的模型难以建模否定查询,这显着限制了它们的适用性。为了解决这一挑战,我们提出了一种新型查询嵌入模型,即锥形嵌入式(锥形),即锥形嵌入式(锥形),它是可以处理所有的基于几何的QE模型,包括所有FOL操作,包括结合,分离和否定。具体而言,锥形代表实体和查询作为二维锥体的笛卡尔产品,其中锥体的交叉和联合自然地模拟了结合和分离操作。通过进一步注意到,锥体的补充仍然存在锥体,我们在嵌入空间中设计几何补充运算符进行否定操作。实验表明,锥体在基准数据集上显着优于现有的现有技术。
translated by 谷歌翻译
Answering complex logical queries on incomplete knowledge graphs is a challenging task, and has been widely studied. Embedding-based methods require training on complex queries, and cannot generalize well to out-of-distribution query structures. Recent work frames this task as an end-to-end optimization problem, and it only requires a pretrained link predictor. However, due to the exponentially large combinatorial search space, the optimal solution can only be approximated, limiting the final accuracy. In this work, we propose QTO (Query Tree Optimization) that can efficiently find the exact optimal solution. QTO finds the optimal solution by a forward-backward propagation on the tree-like computation graph, i.e., query tree. In particular, QTO utilizes the independence encoded in the query tree to reduce the search space, where only local computations are involved during the optimization procedure. Experiments on 3 datasets show that QTO obtains state-of-the-art performance on complex query answering, outperforming previous best results by an average of 22%. Moreover, QTO can interpret the intermediate solutions for each of the one-hop atoms in the query with over 90% accuracy.
translated by 谷歌翻译
关于现实生活知识图(KGS)的多跳上推理是一个高度挑战的问题,因为传统的子图匹配方法无法处理噪音和缺失信息。为了解决这个问题,最近已经引入了一种有希望的方法,该方法基于将逻辑查询和kgs共同嵌入到一个低维空间中以识别答案实体。但是,现有的提案忽略了KGS中固有可用的关键语义知识,例如类型信息。为了利用类型信息,我们提出了一种新颖的类型感知消息传递(TEMP)模型,该模型可以增强查询中的实体和关系表示形式,并同时改善概括,演绎和归纳推理。值得注意的是,Temp是一种插件模型,可以轻松地将其纳入现有的基于嵌入的模型中以提高其性能。在三个现实世界数据集上进行了广泛的实验证明了温度的有效性。
translated by 谷歌翻译
图表可以表示实体之间的关系信息,图形结构广泛用于许多智能任务,例如搜索,推荐和问题应答。然而,实际上大多数图形结构数据都遭受了不完整性,因此链路预测成为一个重要的研究问题。虽然提出了许多模型来用于链路预测,但以下两个问题仍然仍然较少:(1)大多数方法在不利用相关链路中使用丰富的信息,大多数方法都独立模型,并且(2)现有型号主要基于关联设计学习并没有考虑推理。通过这些问题,在本文中,我们提出了图表协作推理(GCR),它可以使用邻居与逻辑推理视角的关系中的关系推理。我们提供了一种简单的方法来将图形结构转换为逻辑表达式,以便链路预测任务可以转换为神经逻辑推理问题。我们应用逻辑受限的神经模块根据逻辑表达式构建网络架构,并使用反向传播以有效地学习模型参数,这在统一架构中桥接可分辨率的学习和象征性推理。为了展示我们工作的有效性,我们对图形相关任务进行实验,例如基于常用的基准数据集的链路预测和推荐,我们的图表合作推理方法实现了最先进的性能。
translated by 谷歌翻译
知识图表(KGS)是真实世界事实的结构化表示,是融合人类知识的智能数据库,可以帮助机器模仿人类问题的方法。然而,由于快速迭代的性质以及数据的不完整,KGs通常是巨大的,并且在公斤上有不可避免的事实。对于知识图链接的预测是针对基于现有的知识推理来完成缺少事实的任务。广泛研究了两个主要的研究流:一个学习可以捕获潜在模式的实体和关系的低维嵌入,以及通过采矿逻辑规则的良好解释性。不幸的是,以前的研究很少关注异质的KG。在本文中,我们提出了一种将基于嵌入的学习和逻辑规则挖掘结合的模型,以推断在KG上。具体地,我们研究了从节点程度的角度涉及各种类型的实体和关系的异构kg中的缺失链接的问题。在实验中,我们证明了我们的DegreEmbed模型优于对现实世界的数据集的国家的最先进的方法。同时,我们模型开采的规则具有高质量和可解释性。
translated by 谷歌翻译
在知识图上回答复杂的一阶逻辑(FOL)查询是多跳推理的基本任务。传统的符号方法穿越完整的知识图来提取答案,从而为每个步骤提供良好的解释。最近的神经方法学习复杂查询的几何嵌入。这些方法可以推广到不完整的知识图,但是它们的推理过程很难解释。在本文中,我们提出了图形神经网络查询执行器(GNN-QE),这是一种神经符号模型,享有两全其美的优势。 GNN-QE将复杂的数据分解为模糊集的关系预测和逻辑操作,这为中间变量提供了解释性。为了理解丢失的链接,GNN-QE从知识图完成中调整了图神经网络以执行关系预测,并使用产品模糊逻辑对逻辑操作进行建模。 3个数据集的实验表明,GNN-QE在回答FOL查询时显着改善了先前的最新模型。同时,GNN-QE可以在没有明确监督的情况下预测答案的数量,并为中间变量提供可视化。
translated by 谷歌翻译
我们使用神经语义解析方法解决对大知识图表的弱监督会议问题的问题。我们介绍了一种新的逻辑表单(LF)语法,可以在图中模拟各种查询,同时仍然足够简单以有效地生成监督数据。我们的变换器的模型将类似于输入的JSON的结构,允许我们轻松地结合知识图形和会话环境。该结构化输入转换为嵌入列表,然后馈送到标准注意图层。我们验证了我们的方法,无论是在语法覆盖范围和LF执行准确性方面,在两个公开可用的数据集,CSQA和Chamquestions,都在Wikidata接地。在CSQA上,我们的方法将覆盖范围从80美元的价格增加到96.2 \%$ 75.6 \%$ 75.6 \%$ 75.6 \%$,关于以前的最先进的结果。在CuncQuestions上,我们对最先进的竞争结果实现了竞争力。
translated by 谷歌翻译
已经开发了许多本体论,即描述逻辑(DL)知识库,以提供有关各个领域的丰富知识。本体论由一个ABOX,即两个实体之间或一个概念与实体之间的断言公理组成,以及Tbox,即两个概念之间的术语公理。神经逻辑推理(NLR)是探索此类知识库的基本任务,该任务旨在根据查询和答案的分布式表示,以逻辑操作来回答多跳的查询。尽管以前的NLR方法可以给出特定的实体级答案,即ABOX答案,但它们无法提供描述性概念级答案,即Tbox答案,其中每个概念都是对一组实体的描述。换句话说,以前的NLR方法在忽略Tbox时唯一的原因是本体论的Abox。特别是,提供Tbox答案可以通过描述性概念来推断每个查询的解释,这使用户可以理解答案,并且在应用本体论领域具有极大的有用性。在这项工作中,我们提出了整个Tbox和Abox(TA-NLR)的神经逻辑推理的问题,该问题解决了需要解决在概念上纳入,代表和操作时需要解决的挑战。我们提出了一种原始解决方案,名为Ta-nlr的TAR。首先,我们合并了基于本体论公理的描述以提供概念的来源。然后,我们将概念和查询表示为模糊集,即其元素具有成员程度的集合,以与实体桥接概念和查询。此外,我们设计了涉及概念的概念的概念和查询以进行优化和推理的概念的设计操作员。两个现实世界数据集的广泛实验结果证明了TAR对TA-NLR的有效性。
translated by 谷歌翻译
查询图形构建旨在通过知识图构建正确的可执行SPARQL以应答自然语言问题。虽然最近的方法通过基于NN的查询图排名进行了良好,但更复杂的问题带来了三个新的挑战:复杂的SPARQL语法,排名的巨大搜索空间,以及当地歧义的嘈杂查询图。本文处理了这些挑战。最初,我们将常见的复杂sparql语法视为包括顶点和边缘的子图,并提出了一个新的统一查询图语法来调整它们。随后,我们提出了一种新的两阶段方法来构建查询图。在第一阶段,通过简单的策略作为候选实例收集了顶级的k $相关的实例(实体,关系等)。在第二阶段,图形生成模型执行分层生成。它首先概述了一个图形结构,其顶点和边缘是空插槽,然后将适当的实例填充到槽中,从而完成查询图。我们的方法将整个查询图的无法忍受的搜索空间分解为经济实惠的操作子空间,同时利用全局结构信息来消除局部歧义。实验结果表明,我们的方法大大提高了最坚定的kgqa基准,在复杂问题上具有出色的性能。
translated by 谷歌翻译
知识图(kg)嵌入是一种主流方法,用于推理不完整的kg。但是,受其固有浅层和静态体系结构的限制,它们几乎无法处理对复杂逻辑查询的不断上升,这些查询包括逻辑运算符,估算的边缘,多个源实体和未知的中间实体。在这项工作中,我们通过掩盖的预训练和微调策略介绍了知识图变压器(kgtransformer)。我们设计了一种kg三重变换方法,以使变压器能够处理kg,这是通过稀疏(MOE)稀疏激活的混合物进一步增强的。然后,我们将复杂的逻辑查询作为掩盖预测提出,并引入了两阶段掩盖的预训练策略,以提高可转移性和概括性。在两个基准上进行的广泛实验表明,KGTRANSFORMER可以始终超过基于KG的基准和九个内域和室外推理任务的高级编码。此外,KGTRANSFORMER可以通过提供解释给定答案的完整推理路径来解释性。
translated by 谷歌翻译
知识基础问题回答(KBQA)旨在通过知识库(KB)回答问题。早期研究主要集中于回答有关KB的简单问题,并取得了巨大的成功。但是,他们在复杂问题上的表现远非令人满意。因此,近年来,研究人员提出了许多新颖的方法,研究了回答复杂问题的挑战。在这项调查中,我们回顾了KBQA的最新进展,重点是解决复杂问题,这些问题通常包含多个主题,表达复合关系或涉及数值操作。详细说明,我们从介绍复杂的KBQA任务和相关背景开始。然后,我们描述用于复杂KBQA任务的基准数据集,并介绍这些数据集的构建过程。接下来,我们提出两个复杂KBQA方法的主流类别,即基于语义解析的方法(基于SP)的方法和基于信息检索的方法(基于IR)。具体而言,我们通过流程设计说明了他们的程序,并讨论了它们的主要差异和相似性。之后,我们总结了这两类方法在回答复杂问题时会遇到的挑战,并解释了现有工作中使用的高级解决方案和技术。最后,我们结论并讨论了与复杂的KBQA有关的几个有希望的方向,以进行未来的研究。
translated by 谷歌翻译