对世界各地的急诊部门(ED)服务的需求不断增长,特别是在Covid-19大流行下。风险三环在优先考虑最需要它们的患者的有限医疗资源方面发挥着至关重要的作用。最近,普遍使用电子健康记录(EHR)已经产生了大量的存储数据,伴随着开发可改善紧急护理的预测模型的巨大机会。然而,没有基于大型公共EHR的广泛接受的ED基准,这是新的研究人员可以轻松访问的基准。填补这种差距的成功可以使研究人员更快,方便地开始研究,而无需详细数据预处理,并促进不同研究和方法之间的比较。在本文中,基于医疗信息MART为重症监护IV急诊部门(MIMIC-IV-ED)数据库,我们提出了一款公共ED基准套件,并获得了从2011年到2019年的50万ED访问的基准数据集。三个ed已经介绍了基于预测任务(住院,关键结果和72小时ED Revisit),其中实施了各种流行的方法,从机器学习方法到临床评分系统进行了实施。他们的性能结果评估并进行了比较。我们的代码是开源,因此任何具有访问模仿-IV-ED的人都可以遵循相同的数据处理步骤,构建基准,并重现实验。本研究提供了洞察力,建议,以及未来研究人员的协议,以处理原始数据并快速建立紧急护理模型。
translated by 谷歌翻译
谵妄是急性急性发病脑功能障碍,在紧急情况下,与较高的死亡率有关。由于其演示和风险因素难以检测和监测,这取决于患者的潜在病情。在我们的研究中,我们旨在识别谵妄人口中的亚型,并建立使用医疗信息MART进行密集护理IV(MIMIC-IV)数据来检测谵妄的亚组特定的预测模型。我们表明谵妄存在于谵妄中。对于特定于组的预测模型,还观察到特征重要性的差异。我们的工作可以重新校准每个谵妄亚组的现有谵妄预测模型,并提高ICU或急诊部门患者的谵妄检测和监测的精度。
translated by 谷歌翻译
越来越多的研究致力于将机器学习方法应用于电子健康记录(EHR)数据,以完成各种临床任务。这一不断增长的研究领域暴露了所有人EHR数据集可访问性的局限性,以及不同建模框架的可重复性。这些局限性的原因之一是缺乏标准化的预处理管道。模仿是一种以许多研究中使用的原始格式免费获得的EHR数据集。缺乏标准化的预处理步骤是对数据集更广泛采用的重大障碍。它还导致在下游任务中使用不同的队列,从而限制了在类似研究中比较结果的能力。对比研究还使用各种不同的性能指标,可以大大降低比较模型结果的能力。在这项工作中,我们提供了一条端到端完全可定制的管道,以提取,清洁和预处理数据;并预测和评估ICU和非ICU相关临床时间序列预测任务的模拟数据集(MIMIC-IV)的第四版。该工具可在https://github.com/healthylaife/mimic-imic-iv-data-pipeline上公开获得。
translated by 谷歌翻译
风险评分广泛用于临床决策,通常由逻辑回归模型产生。基于机器学习的方法可以很好地识别重要的预测因子,但这种“黑匣子”变量选择限制解释性,并且从单个模型评估的可变重要性可以偏置。我们提出了一种强大而可解释的可解释的可解释选择方法,使用最近开发的福利可变重要性云(福利维奇)占模型的可变性。我们的方法评估和可视化了深入推理和透明变量选择的总变量贡献,并过滤出非重要贡献者来简化模型构建步骤。我们从可变贡献中获得了一个集合变量排名,这很容易与自动化和模块化的风险分数发生器,自动摩托,以方便的实现。在对早期死亡或意外再入住的研究中,福糖选定了6个候选变量中的6个,以创建一个良好的性能,从机器学习的排名到一个16变量模型具有类似的性能。
translated by 谷歌翻译
COVID-19大流行对全球医疗保健系统造成了沉重的负担,并造成了巨大的社会破坏和经济损失。已经提出了许多深度学习模型来执行临床预测任务,例如使用电子健康记录(EHR)数据在重症监护病房中为Covid-19患者的死亡率预测。尽管在某些临床应用中取得了最初的成功,但目前缺乏基准测试结果来获得公平的比较,因此我们可以选择最佳模型以供临床使用。此外,传统预测任务的制定与重症监护现实世界的临床实践之间存在差异。为了填补这些空白,我们提出了两项​​临床预测任务,特定于结局的预测和重症监护病房中的COVID-19患者的早期死亡率预测。这两个任务是根据幼稚的停车时间和死亡率预测任务的改编,以适应COVID-19患者的临床实践。我们提出了公平,详细的开源数据预处管道,并评估了两项任务的17个最先进的预测模型,包括5个机器学习模型,6种基本的深度学习模型和6种专门为EHR设计的深度学习预测模型数据。我们使用来自两个现实世界Covid-19 EHR数据集的数据提供基准测试结果。这两个数据集都可以公开可用,而无需任何查询,并且可以根据要求访问一个数据集。我们为两项任务提供公平,可重复的基准测试结果。我们在在线平台上部署所有实验结果和模型。我们还允许临床医生和研究人员将其数据上传到平台上,并使用训练有素的模型快速获得预测结果。我们希望我们的努力能够进一步促进Covid-19预测建模的深度学习和机器学习研究。
translated by 谷歌翻译
最近应用于从密集护理单位收集的时间序列的机器学习方法的成功暴露了缺乏标准化的机器学习基准,用于开发和比较这些方法。虽然原始数据集(例如MIMIC-IV或EICU)可以在物理体上自由访问,但是选择任务和预处理的选择通常是针对每个出版物的ad-hoc,限制出版物的可比性。在这项工作中,我们的目标是通过提供覆盖大型ICU相关任务的基准来改善这种情况。使用HirID数据集,我们定义与临床医生合作开发的多个临床相关任务。此外,我们提供可重复的端到端管道,以构建数据和标签。最后,我们提供了对当前最先进的序列建模方法的深入分析,突出了这种类型数据的深度学习方法的一些限制。通过这款基准,我们希望为研究界提供合理比较的可能性。
translated by 谷歌翻译
COVID-19的大流行造成了毁灭性的经济和社会破坏,使全球医疗机构的资源紧张。这导致全国范围内呼吁模型预测Covid-19患者的住院和严重疾病,以告知有限医疗资源的分配。我们回应针对儿科人群的其中一种。为了应对这一挑战,我们使用电子健康记录研究了针对儿科人群的两项预测任务:1)预测哪些儿童更有可能住院,而2)在住院儿童中,哪些孩子更有可能出现严重的症状。我们通过新颖的机器学习模型MEDML应对国家儿科Covid-19数据挑战。 MEDML根据超过600万个医学概念的医学知识和倾向得分提取了最预测的特征,并通过图神经网络(GNN)结合了异质医学特征之间的功能间关系。我们使用来自国家队列协作(N3C)数据集的数据评估了143,605名患者的MEDML,并在143,605名患者的住院预测任务中评估了严重性预测任务的11,465名患者。我们还报告了详细的小组级和个人级特征的重要性分析,以评估模型的解释性。与最佳的基线机器学习模型相比,MEDML的AUROC得分高达7%,AUPRC得分高达14%,并且自大流行以来的所有九个国家地理区域以及所有三个月的跨度都表现良好。我们的跨学科研究团队开发了一种将临床领域知识纳入新型机器学习模型的框架的方法,该框架比当前最新的数据驱动的功能选择方法更具预测性和可解释。
translated by 谷歌翻译
医学中的机器学习利用了财富的医疗保健数据来提取知识,促进临床决策,最终改善护理。然而,在缺乏人口统计分集的数据集上培训的ML模型可以在适用于不足的人群时产生次优绩效(例如少数民族,社会经济地位较低),因此延续了健康差异。在这项研究中,我们评估了四种型分类,以预测高氯血症 - 一种经常由ICU人口中的侵袭性流体给药的条件 - 并将其在种族,性别和保险亚组中进行比较。我们观察到,除了基于实验室的患者的模型性能之外,还要添加社会决定因素特征。 40个模型 - 亚组中的40分,亚组测试产生了显着不同的AUC分数,提示在将ML模型应用于社会决定簇子组时的差异。我们敦促未来的研究人员设计主动调整潜在偏见的模型,并包括他们研究中的子组报告。
translated by 谷歌翻译
人工智能(AI)系统在接下来的几十年中有很大的希望可以改善医疗保健。具体而言,利用多个数据源和输入模式的AI系统有望成为一种可行的方法,可以在广泛的应用程序中提供更准确的结果和可部署的管道。在这项工作中,我们提出并评估一个统一的医学中的整体AI(HAIM)框架,以促进利用多模式输入的AI系统的生成和测试。我们的方法使用可通用的数据预处理和机器学习建模阶段,可以很容易地适应医疗保健环境中的研究和部署。我们通过训练和表征基于MIMIC-IV-MM的14,324个独立模型来评估我们的HAIM框架,该模型是一种多模式临床数据库(n = 34,537个样本),其中包含7,279个独特的住院和6,485名患者,涵盖了4个数据模态的所有可能输入组合(即,所有可能的输入组合)表格,时间序列,文本和图像),11个独特的数据源和12个预测任务。我们表明,该框架可以始终如一地生产出在各种医疗保健示范中超过相似的单源方法的模型(乘以6-33%),包括10种不同的胸部病理学诊断,以及休息时间和48小时的死亡率预测。我们还使用Shapley值量化了每种模式和数据源的贡献,这证明了数据类型重要性的异质性以及在不同医疗保健相关的任务中多模式输入的必要性。我们的整体医学AI(HAIM)框架的可推广性能和灵活性可以为未来的临床和运营医疗环境中的多模式预测系统提供有希望的途径。
translated by 谷歌翻译
抗微生物抗性(AMR)是患者的风险和医疗保健系统的负担。但是,AMR测定通常需要几天。本研究为基于易于使用的临床和微生物预测因子,包括患者人口统计,医院住宿数据,诊断,临床特征以及微生物/抗微生物特征,以及仅使用微生物/抗微生物特征将这些模型与微生物/抗微生物特性进行基于幼稚抗体模型的模型的预测模型。在培养之前准确地预测阻力的能力可以向临床决策提供通知临床决策并缩短行动时间。这里采用的机器学习算法显示出改进的分类性能(接收器操作特性曲线0.88-0.89的区域)与使用飞利浦EICU研究所的6个生物和10个抗生素的接收器操作特征曲线0.86下的接收器下的面积为0.88-0.89)(ERI )数据库。该方法可以帮助指导抗菌治疗,目的是改善患者结果并减少不必要或无效抗生素的使用。
translated by 谷歌翻译
医院住宿时间(LOS)是最重要的医疗保健度量之一,反映了医院的服务质量,有助于改善医院调度和管理。LOS预测有助于成本管理,因为留在医院的患者通常在资源受到严重限制的情况下这样做。在这项研究中,我们通过机器学习和统计方法审查了LOS预测的论文。我们的文献综述考虑了对卒中患者LOS预测的研究研究。一些受访的研究表明,作者达成了相应的结论。例如,患者的年龄被认为是一些研究中卒中患者LOS的重要预测因子,而其他研究则认为年龄不是一个重要因素。因此,在该领域需要额外的研究以进一步了解卒中患者LOS的预测因子。
translated by 谷歌翻译
源于机器学习和优化的临床决策支持工具可以为医疗保健提供者提供显着的价值,包括通过更好地管理重症监护单位。特别是,重要的是,患者排放任务在降低患者的住宿时间(以及相关住院费用)和放弃决策后的入院甚至死亡的风险之间存在对细微的折衷。这项工作介绍了一个端到端的一般框架,用于捕获这种权衡,以推荐患者电子健康记录的最佳放电计时决策。数据驱动方法用于导出捕获患者的生理条件的解析,离散状态空间表示。基于该模型和给定的成本函数,在数值上制定并解决了无限的地平线折扣明马尔科夫决策过程,以计算最佳的排放政策,其价值使用违规评估策略进行评估。进行广泛的数值实验以使用现实生活重症监护单元患者数据来验证所提出的框架。
translated by 谷歌翻译
Tuberculosis (TB), an infectious bacterial disease, is a significant cause of death, especially in low-income countries, with an estimated ten million new cases reported globally in $2020$. While TB is treatable, non-adherence to the medication regimen is a significant cause of morbidity and mortality. Thus, proactively identifying patients at risk of dropping off their medication regimen enables corrective measures to mitigate adverse outcomes. Using a proxy measure of extreme non-adherence and a dataset of nearly $700,000$ patients from four states in India, we formulate and solve the machine learning (ML) problem of early prediction of non-adherence based on a custom rank-based metric. We train ML models and evaluate against baselines, achieving a $\sim 100\%$ lift over rule-based baselines and $\sim 214\%$ over a random classifier, taking into account country-wide large-scale future deployment. We deal with various issues in the process, including data quality, high-cardinality categorical data, low target prevalence, distribution shift, variation across cohorts, algorithmic fairness, and the need for robustness and explainability. Our findings indicate that risk stratification of non-adherent patients is a viable, deployable-at-scale ML solution.
translated by 谷歌翻译
快速准确地检测该疾病可以大大帮助减少任何国家医疗机构对任何大流行期间死亡率降低死亡率的压力。这项工作的目的是使用新型的机器学习框架创建多模式系统,该框架同时使用胸部X射线(CXR)图像和临床数据来预测COVID-19患者的严重程度。此外,该研究还提出了一种基于nom图的评分技术,用于预测高危患者死亡的可能性。这项研究使用了25种生物标志物和CXR图像,以预测意大利第一波Covid-19(3月至6月2020年3月至6月)在930名Covid-19患者中的风险。提出的多模式堆叠技术分别产生了89.03%,90.44%和89.03%的精度,灵敏度和F1分数,以识别低风险或高危患者。与CXR图像或临床数据相比,这种多模式方法可提高准确性6%。最后,使用多元逻辑回归的列线图评分系统 - 用于对第一阶段确定的高风险患者的死亡风险进行分层。使用随机森林特征选择模型将乳酸脱氢酶(LDH),O2百分比,白细胞(WBC)计数,年龄和C反应蛋白(CRP)鉴定为有用的预测指标。开发了五个预测因素参数和基于CXR图像的列函数评分,以量化死亡的概率并将其分为两个风险组:分别存活(<50%)和死亡(> = 50%)。多模式技术能够预测F1评分为92.88%的高危患者的死亡概率。开发和验证队列曲线下的面积分别为0.981和0.939。
translated by 谷歌翻译
口服食物挑战(OFC)对于准确诊断患者的食物过敏至关重要。但是,患者不愿接受OFC,对于那些这样做的患者,在农村/社区医疗保健环境中,对过敏症患者的使用率有限。通过机器学习方法对OFC结果的预测可以促进在家中食品过敏原的删除,在OFC中改善患者和医师的舒适度,并通过最大程度地减少执行的OFC的数量来节省医疗资源。临床数据是从共同接受1,284个OFC的1,12例患者那里收集的,包括临床因素,包括血清特异性IgE,总IgE,皮肤刺测试(SPTS),症状,性别和年龄。使用这些临床特征,构建了机器学习模型,以预测花生,鸡蛋和牛奶挑战的结果。每种过敏原的最佳性能模型是使用凹入和凸内核(LUCCK)方法创建的,该方法在曲线(AUC)(AUC)下分别用于花生,鸡蛋和牛奶OFC预测为0.76、0.68和0.70, 。通过Shapley添加说明(SHAP)的模型解释表明,特定的IgE以及SPTS的Wheal和Flare值高度预测了OFC结果。该分析的结果表明,机器学习有可能预测OFC结果,并揭示了相关的临床因素进行进一步研究。
translated by 谷歌翻译
传统机器学习方法面临两种主要挑战,在处理医疗保健预测分析任务方面。首先,医疗保健数据的高维性质需要劳动密集型和耗时的过程,为每项新任务选择适当的功能集。其次,这些方法依赖于特征工程来捕获患者数据的顺序性,这可能无法充分利用医疗事件的时间模式及其依赖性。最近的深度学习方法通​​过解决医疗数据的高维和时间挑战,对各种医疗保健预测任务显示了有希望的性能。这些方法可以学习关键因素(例如,医学概念或患者)的有用表示及其与高维原始或最低处理的医疗保健数据的相互作用。在本文中,我们系统地审查了专注于推进和使用深神经网络的研究,以利用患者结构化时间序列数据进行医疗保健预测任务。为了识别相关研究,搜索MEDLINE,IEEE,SCOPUS和ACM数字图书馆于2021年2月7日出版的研究。我们发现研究人员在十个研究流中为深度时间序列预测文献做出了贡献:深入学习模型,缺少价值处理,不规则处理,患者表示,静态数据包容,关注机制,解释,纳入医疗本体,学习策略和可扩展性。本研究总结了这些文献流的研究见解,确定了几个关键研究差距,并提出了未来的患者时间序列数据深入学习的研究机会。
translated by 谷歌翻译
败血症是一种威胁生命的患有器官功能障碍的疾病,是全球死亡和重症疾病的主要原因。急诊科分类过程中败血症的准确检测将允许尽早开始实验室分析,抗生素给药和其他败血症治疗方案。这项研究的目的是确定是否可以将EHR数据与最新的机器学习算法(Kate Sepsis)和临床自然语言处理一起提取和合成,以产生准确的脓毒症模型,并将Kate Sepsis与现有的败血症筛查方案进行比较爵士和QSOFA。使用来自16家参与医院的分类数据的患者遇到的患者遭遇开发了机器学习模型(Kate Sepsis)。凯特败血症,SIRS,标准筛查(具有感染源的SIRS)和QSOFA在三个设置中进行了测试。队列A是对单个站点1的医疗记录的回顾性分析。同类B是对位点1的前瞻性分析1.同伴C是对站点1的回顾性分析,并有15个地点。在所有队列中,凯特败血症的AUC为0.94-0.963,TPR为73-74.87%和3.76-7.17%FPR。标准筛选显示AUC为0.682-0.726,TPR为39.39-51.19%和2.9-6.02%FPR。 QSOFA协议的AUC为0.544-0.56,TPR为10.52-13.18%和1.22-1.68%FPR。对于严重的败血症,在所有队列中,凯特败血症的AUC为0.935-0.972,TPR为70-82.26%和4.64-8.62%FPR。对于败血性休克,在所有队列中,凯特败血症的AUC为0.96-0.981,TPR为85.71-89.66%和4.85-8.8%FPR。 SIRS,标准筛选和QSOFA表现出严重败血症和败血性休克检测的低AUC和TPR。凯特败血症在分类中提供的败血症检测性能比常用的筛查方案更好。
translated by 谷歌翻译
高流量鼻腔插管(HFNC)为批判性儿童提供了非侵入性呼吸支持,这些儿童可能比其他非侵入性(NIV)技术更容易耐受。及时预测HFNC故障可以提供增加呼吸支持的指示。这项工作开发并比较了机器学习模型来预测HFNC故障。从2010年1月到2月20日至2月的患者EMR进行了患者EMR进行了回顾性研究。培训了长期内记忆(LSTM)模型,以产生连续预测HFNC故障。在HFNC启动后的各个时间使用接收器操作曲线(AUROC)下的区域评估性能。还评估了HFNC启动后2小时后预测的敏感性,特异性,正面和消极预测值(PPV,NPV)。这些指标也以主要呼吸诊断的群组计算。 834 HFNC试验[455培训,173次验证,206检验]符合纳入标准,其中175 [103,30,42](21.0%)升级至NIV或插管。具有转移学习的LSTM模型通常比LR模型更好地执行,最佳LSTM模型在启动后2小时实现0.78,VS 0.66的AUTOC。使用EMR数据培训的机器学习模型能够在发起24小时内识别出现在HFNC中失败的风险的风险。 LSTM模型结合了转移学习,输入数据持久性和合奏显示的性能提高了LR和标准LSTM模型。
translated by 谷歌翻译
30天的医院再入院是一个长期存在的医疗问题,会影响患者的发病率和死亡率,每年造成数十亿美元的损失。最近,已经创建了机器学习模型来预测特定疾病患者的住院再入院风险,但是不存在任何模型来预测所有患者的风险。我们开发了一个双向长期记忆(LSTM)网络,该网络能够使用随时可用的保险数据(住院访问,门诊就诊和药物处方)来预测任何入院患者的30天重新入选,无论其原因如何。使用历史,住院和入院后数据时,表现最佳模型的ROC AUC为0.763(0.011)。 LSTM模型显着优于基线随机森林分类器,表明了解事件的顺序对于模型预测很重要。与仅住院数据相比,与住院数据相比,将30天的历史数据纳入也显着改善了模型性能,这表明患者入院前的临床病史,包括门诊就诊和药房数据是重新入院的重要贡献者。我们的结果表明,机器学习模型能够使用结构化保险计费数据以合理的准确性来预测住院再入院的风险。由于可以从网站中提取计费数据或同等代理人,因此可以部署此类模型以识别有入院风险的患者,或者分配更多可靠的随访(更近的后续后续,家庭健康,邮寄药物) - 出院后风险患者。
translated by 谷歌翻译
偏见标志着病史,导致影响边缘化群体的不平等护理。观察数据中缺失的模式通常反映了这些群体差异,但是算法对群体特定缺失的算法公平含义尚不清楚。尽管具有潜在的影响,但归因通常还是被遗忘的预处理步骤。充其量,从业者通过优化整体绩效来指导选级选择,而忽略了这种预处理如何加强不平等。我们的工作通过研究插补如何影响下游算法的公平性来质疑这种选择。首先,我们提供了临床存在机制与特定组的遗失模式之间关系的结构化视图。然后,通过模拟和现实世界实验,我们证明了插补选择会影响边缘化的群体绩效,并且没有归因策略始终降低差异。重要的是,我们的结果表明,当前的做法可能危害健康平等,因为在人口层面上类似地执行插补策略可能会以不同的方式影响边缘化的群体。最后,我们提出了缓解因机器学习管道的忽视步骤而导致的不平等的建议。
translated by 谷歌翻译