在本文中,我们展示了我们参与生物重建VII轨道3的工作 - 在推文中自动提取药物名称,在那里我们实施了一个多任务学习模型,这些模型是在文本分类和序列标记上进行的联合培训的多任务学习模型。我们最好的系统运行达到了80.4的严格F1,比所有参与者的平均分数排名第一,排名超过10点。我们的分析表明,集合技术,多任务学习和数据增强都是有益于推文中的药物检测。
translated by 谷歌翻译
生物重建VII轨道3挑战重点是在Twitter用户时间表中识别药物名称。对于我们提交这一挑战,我们通过使用多种数据增强技术扩展了可用的培训数据。然后,增强数据用于微调在一般域推特内容上预先培训的语言模型的集合。拟议的方法优于先前的最先进的算法Kusuri,并在竞争中排名高,为我们所选择的客观函数重叠F1分数。
translated by 谷歌翻译
社交媒体帖子包含有关医疗条件和与健康相关行为的潜在有价值的信息。生物重建VII任务3专注于通过识别推文中的药物和膳食补充剂的提及来挖掘这些信息。我们通过精细调整多个BERT样式语言模型来执行此任务以执行令牌级分类,并将它们组合成集合以生成最终预测。我们最好的系统由五个Megatron-Bert-345M型号组成,在看不见的测试数据上实现了0.764的严格F1得分。
translated by 谷歌翻译
在这项工作中,我们介绍了患者生成的含量中第一个用于德国不良药物反应(ADR)检测的语料库。该数据包括来自德国患者论坛的4,169个二进制注释的文档,用户谈论健康问题并从医生那里获得建议。正如该领域的社交媒体数据中常见的那样,语料库的类标签非常不平衡。这一主题不平衡使其成为一个非常具有挑战性的数据集,因为通常相同的症状可能会有几种原因,并且并不总是与药物摄入有关。我们旨在鼓励在ADR检测领域进行进一步的多语性努力,并使用基于多语言模型的零和少数学习方法为二进制分类提供初步实验。当对XLM-Roberta进行微调首先在英语患者论坛数据上,然后在新的德国数据上进行微调时,我们的正面级别的F1得分为37.52。我们使数据集和模型公开可供社区使用。
translated by 谷歌翻译
Automated offensive language detection is essential in combating the spread of hate speech, particularly in social media. This paper describes our work on Offensive Language Identification in low resource Indic language Marathi. The problem is formulated as a text classification task to identify a tweet as offensive or non-offensive. We evaluate different mono-lingual and multi-lingual BERT models on this classification task, focusing on BERT models pre-trained with social media datasets. We compare the performance of MuRIL, MahaTweetBERT, MahaTweetBERT-Hateful, and MahaBERT on the HASOC 2022 test set. We also explore external data augmentation from other existing Marathi hate speech corpus HASOC 2021 and L3Cube-MahaHate. The MahaTweetBERT, a BERT model, pre-trained on Marathi tweets when fine-tuned on the combined dataset (HASOC 2021 + HASOC 2022 + MahaHate), outperforms all models with an F1 score of 98.43 on the HASOC 2022 test set. With this, we also provide a new state-of-the-art result on HASOC 2022 / MOLD v2 test set.
translated by 谷歌翻译
在过去的十年中,越来越多的用户开始在社交媒体平台,博客和健康论坛上报告不良药物事件(ADE)。鉴于大量报告,药物宣传的重点是使用自然语言处理(NLP)技术快速检查这些大量文本收集的方法,从而提到了与药物相关的不良反应对触发医学调查的提及。但是,尽管对任务和NLP的进步越来越兴趣,但面对语言现象(例如否定和猜测),这些模型的鲁棒性是一个公开的研究问题。否定和猜测是自然语言中普遍存在的现象,可以严重阻碍自动化系统区分文本中事实和非事实陈述的能力。在本文中,我们考虑了在社交媒体文本上进行ADE检测的四个最新系统。我们介绍了Snax,这是一种基准测试,以测试其性能,以对包含被否定和推测的ADE的样品进行样本,显示它们针对这些现象的脆弱性。然后,我们引入了两种可能提高这些模型的鲁棒性的可能策略,表明它们俩都带来了大幅提高性能,从而将模型预测的伪造实体数量降低了60%以否定为否定,而猜测为80%。
translated by 谷歌翻译
社交媒体平台上有毒内容的普遍性,例如仇恨言论,冒犯性语言和厌女症,给我们的相互联系的社会带来了严重的挑战。这些具有挑战性的问题引起了自然语言处理(NLP)社区的广泛关注。在本文中,我们将提交的系统介绍给第一个阿拉伯语厌女症识别共享任务。我们研究了三个多任务学习模型及其单任务。为了编码输入文本,我们的模型依赖于预先训练的Marbert语言模型。总体获得的结果表明,我们所有提交的模型均在厌女症识别和分类任务中取得了最佳性能(排名前三的提交)。
translated by 谷歌翻译
The health mention classification (HMC) task is the process of identifying and classifying mentions of health-related concepts in text. This can be useful for identifying and tracking the spread of diseases through social media posts. However, this is a non-trivial task. Here we build on recent studies suggesting that using emotional information may improve upon this task. Our study results in a framework for health mention classification that incorporates affective features. We present two methods, an intermediate task fine-tuning approach (implicit) and a multi-feature fusion approach (explicit) to incorporate emotions into our target task of HMC. We evaluated our approach on 5 HMC-related datasets from different social media platforms including three from Twitter, one from Reddit and another from a combination of social media sources. Extensive experiments demonstrate that our approach results in statistically significant performance gains on HMC tasks. By using the multi-feature fusion approach, we achieve at least a 3% improvement in F1 score over BERT baselines across all datasets. We also show that considering only negative emotions does not significantly affect performance on the HMC task. Additionally, our results indicate that HMC models infused with emotional knowledge are an effective alternative, especially when other HMC datasets are unavailable for domain-specific fine-tuning. The source code for our models is freely available at https://github.com/tahirlanre/Emotion_PHM.
translated by 谷歌翻译
自动监测不良药物事件(ADES)或反应(ADRS)目前正在从生物医学界获得重大关注。近年来,用户生成的社交媒体数据已成为这项任务的宝贵资源。神经模型对ADR检测的自动文本分类取得了令人印象深刻的性能。然而,对这些方法的培训和评估是对关于目标药物的用户生成的文本进行。在本文中,我们评估了不同药物组的最先进神经结构的鲁棒性。除了手动注释的列车集外,我们还调查了几种使用伪标记的数据的策略。在数据集外部实验中诊断了监督模型的瓶颈在故障性能方面,而额外的伪标记数据无论文本选择策略如何,都会提高整体结果。
translated by 谷歌翻译
Facebook和Twitter等社交媒体平台上的在线形象已成为互联网用户的日常习惯。尽管平台为用户提供了大量服务,但用户仍遭受网络欺凌的困扰,这进一步导致了精神虐待,并可能升级以对个人或目标群体造成身体伤害。在本文中,我们使用相关的阿拉伯语Twitter数据集将其提交给阿拉伯仇恨言论2022共享任务研讨会(OSACT5 2022)。共享任务由3个子任务组成,子任务A的重点是检测该推文是否令人反感。然后,对于进攻性推文,子任务B专注于检测该推文是否是仇恨言论。最后,对于仇恨言论推文,子任务C的重点是检测六个不同类别中的细粒度仇恨言论。变压器模型证明了它们在分类任务方面的效率,但是在小型或不平衡数据集中进行微调时的合适问题。我们通过研究多个培训范式(例如对比学习和多任务学习以及分类微调)以及我们前5名表演者的合奏来克服这一限制。我们提出的解决方案分别在子任务A,B和C中分别实现了0.841、0.817和0.476宏F1平均。
translated by 谷歌翻译
在本文中,我们提出了一个手动注释的10,000名推文载有五个Covid-19事件的公开报告,包括积极和消极的测试,死亡,拒绝获得测试,索赔治愈和预防。我们为每种事件类型设计了插槽填充问题,并注释了总共31个细粒度的插槽,例如事件的位置,最近的旅行和密切联系人。我们表明我们的语料库可以支持微调基于伯特的分类器,以自动提取公共报告的事件,并帮助跟踪新疾病的传播。我们还证明,通过从数百万推文中提取的事件汇总,我们在回答复杂的查询时达到令人惊讶的高精度,例如“哪些组织在费城在费城测试的员工?”我们将释放我们的语料库(使用用户信息被删除),自动提取模型以及研究社区的相应知识库。
translated by 谷歌翻译
通过匿名和可访问性,社交媒体平台促进了仇恨言论的扩散,提示在开发自动方法以识别这些文本时提高研究。本文探讨了使用各种深度神经网络模型架构(如长短期内存(LSTM)和卷积神经网络(CNN)的文本中性别歧视分类。这些网络与来自变压器(BERT)和Distilbert模型的双向编码器表示形式的传输学习一起使用,以及数据增强,以在社交中的性别歧视识别中对推文和GAB的数据集进行二进制和多种性别歧视分类Iberlef 2021中的网络(存在)任务。看到模型与竞争对手的比较,使用BERT和多滤波器CNN模型进行了最佳性能。数据增强进一步提高了多级分类任务的结果。本文还探讨了模型所做的错误,并讨论了由于标签的主观性和社交媒体中使用的自然语言的复杂性而自动对性别歧视的难度。
translated by 谷歌翻译
随着社交媒体平台影响的增长,滥用的影响变得越来越有影响力。自动检测威胁和滥用语言的重要性不能高估。但是,大多数现有的研究和最先进的方法都以英语为目标语言,对低资产品语言的工作有限。在本文中,我们介绍了乌尔都语的两项滥用和威胁性语言检测的任务,该任务在全球范围内拥有超过1.7亿扬声器。两者都被视为二进制分类任务,其中需要参与系统将乌尔都语中的推文分类为两个类别,即:(i)第一个任务的滥用和不滥用,以及(ii)第二次威胁和不威胁。我们提供两个手动注释的数据集,其中包含标有(i)滥用和非虐待的推文,以及(ii)威胁和无威胁。滥用数据集在火车零件中包含2400个注释的推文,测试部分中包含1100个注释的推文。威胁数据集在火车部分中包含6000个注释的推文,测试部分中包含3950个注释的推文。我们还为这两个任务提供了逻辑回归和基于BERT的基线分类器。在这项共同的任务中,来自六个国家的21个团队注册参加了参与(印度,巴基斯坦,中国,马来西亚,阿拉伯联合酋长国和台湾),有10个团队提交了子任务A的奔跑,这是虐待语言检测,9个团队提交了他们的奔跑对于正在威胁语言检测的子任务B,七个团队提交了技术报告。最佳性能系统达到子任务A的F1得分值为0.880,子任务为0.545。对于两个子任务,基于M-Bert的变压器模型都表现出最佳性能。
translated by 谷歌翻译
Detecting personal health mentions on social media is essential to complement existing health surveillance systems. However, annotating data for detecting health mentions at a large scale is a challenging task. This research employs a multitask learning framework to leverage available annotated data from a related task to improve the performance on the main task to detect personal health experiences mentioned in social media texts. Specifically, we focus on incorporating emotional information into our target task by using emotion detection as an auxiliary task. Our approach significantly improves a wide range of personal health mention detection tasks compared to a strong state-of-the-art baseline.
translated by 谷歌翻译
近年来,在危机期间从社交媒体职位挖掘重要信息的任务已成为辅助应急响应的目的研究的重点。 TREC事件流(IS)曲目是为此目的而组织的研究挑战。该曲目要求参与系统将与危机相关的推文进行分类为人道主义援助相关信息类型,并估算其关键性的重要性。前者是指多标签信息类型分类任务,后者是指优先级估计任务。在本文中,我们报告了TREC中的大学学院计算机科学(UCD-CS)的参与 - 是2021年。我们探讨了各种方法,包括简单的机器学习算法,多任务学习技术,文本增强和集合方法。官方评估结果表明,我们的运行达到了许多指标中的最高分数。为了援助再现性,我们的代码在HTTPS://github.com/wangcongcong123/crisis-mtl上公开提供。
translated by 谷歌翻译
在线仇恨是许多社交媒体平台的日益关注。为解决此问题,不同的社交媒体平台为此类内容引入了审核策略。他们还聘请了可以检查职位违反审议政策的职位并采取适当行动。辱骂语言研究领域的院士也进行各种研究以更好地检测此类内容。虽然在英语中有广泛的辱骂语言检测,但在这场火灾中,在印度,乌尔都语等低资源语言中有一个滥用语言检测的空格。在URDU中提出滥用语言检测数据集以及威胁性语言检测。在本文中,我们探索了XGBoost,LGBM,基于M-BERT的M-BERT模型的多种机器学习模型,用于基于共享任务的URDU滥用和威胁的内容检测。我们观察了在阿拉伯语中滥用语言数据集的变压器模型有助于获得最佳性能。我们的模型首先是滥用和威胁性的内容检测,分别使用0.88和0.54的F1Scoreof。
translated by 谷歌翻译
随着在线社交媒体提供的沟通自由,仇恨言论越来越多地产生。这导致网络冲突影响个人和国家一级的社会生活。结果,在发送到社交网络之前,仇恨的内容分类越来越需要过滤仇恨内容。本文着重于使用多个深层模型在社交媒体中对仇恨言论进行分类,这些模型通过整合了最近的基于变压器的语言模型,例如BERT和神经网络。为了改善分类性能,我们通过几种合奏技术进行了评估,包括软投票,最大价值,硬投票和堆叠。我们使用了三个公开可用的Twitter数据集(Davidson,Hateval2019,OLID)来识别进攻性语言。我们融合了所有这些数据集以生成单个数据集(DHO数据集),该数据集在不同的标签上更加平衡,以执行多标签分类。我们的实验已在Davidson数据集和Dho Corpora上举行。后来给出了最佳的总体结果,尤其是F1宏观分数,即使它需要更多的资源(时间执行和内存)。实验显示了良好的结果,尤其是整体模型,其中堆叠在Davidson数据集上的F1得分为97%,并且在DHO数据集上汇总合奏的77%。
translated by 谷歌翻译
自2020年初以来,Covid-19-19造成了全球重大影响。这给社会带来了很多困惑,尤其是由于错误信息通过社交媒体传播。尽管已经有几项与在社交媒体数据中发现错误信息有关的研究,但大多数研究都集中在英语数据集上。印度尼西亚的COVID-19错误信息检测的研究仍然很少。因此,通过这项研究,我们收集和注释印尼语的数据集,并通过考虑该推文的相关性来构建用于检测COVID-19错误信息的预测模型。数据集构造是由一组注释者进行的,他们标记了推文数据的相关性和错误信息。在这项研究中,我们使用印度培训预培训的语言模型提出了两阶段分类器模型,以进行推文错误信息检测任务。我们还尝试了其他几种基线模型进行文本分类。实验结果表明,对于相关性预测,BERT序列分类器的组合和用于错误信息检测的BI-LSTM的组合优于其他机器学习模型,精度为87.02%。总体而言,BERT利用率有助于大多数预测模型的更高性能。我们发布了高质量的Covid-19错误信息推文语料库,用高通道一致性表示。
translated by 谷歌翻译
我们介绍了Twhin-Bert,这是一种多语言语言模型,该模型在流行的社交网络Twitter上训练了内域数据。Twhin-bert与先前的预训练的语言模型有所不同,因为它不仅接受了基于文本的自学训练,而且还具有基于Twitter异质信息网络(TWHIN)中丰富社交活动的社会目标。我们的模型接受了70亿条推文的培训,涵盖了100多种不同的语言,为简短,嘈杂,用户生成的文本提供了有价值的表示形式。我们对各种多语言社会建议和语义理解任务进行评估,并证明了对既定的预训练的语言模型的大幅改进。我们将自由开放源代码Twhin-Bert和我们为研究社区提供的精心策划标签预测和社会参与基准数据集。
translated by 谷歌翻译
The widespread of offensive content online, such as hate speech and cyber-bullying, is a global phenomenon. This has sparked interest in the artificial intelligence (AI) and natural language processing (NLP) communities, motivating the development of various systems trained to detect potentially harmful content automatically. These systems require annotated datasets to train the machine learning (ML) models. However, with a few notable exceptions, most datasets on this topic have dealt with English and a few other high-resource languages. As a result, the research in offensive language identification has been limited to these languages. This paper addresses this gap by tackling offensive language identification in Sinhala, a low-resource Indo-Aryan language spoken by over 17 million people in Sri Lanka. We introduce the Sinhala Offensive Language Dataset (SOLD) and present multiple experiments on this dataset. SOLD is a manually annotated dataset containing 10,000 posts from Twitter annotated as offensive and not offensive at both sentence-level and token-level, improving the explainability of the ML models. SOLD is the first large publicly available offensive language dataset compiled for Sinhala. We also introduce SemiSOLD, a larger dataset containing more than 145,000 Sinhala tweets, annotated following a semi-supervised approach.
translated by 谷歌翻译