我们研究了覆盖的阶段 - 避免多个代理的动态游戏,其中多个代理相互作用,并且每种希望满足不同的目标条件,同时避免失败状态。 Reach-避免游戏通常用于表达移动机器人运动计划中发现的安全关键最优控制问题。虽然这些运动计划问题存在各种方法,但我们专注于找到时间一致的解决方案,其中计划未来的运动仍然是最佳的,尽管先前的次优行动。虽然摘要,时间一致性封装了一个非常理想的财产:即使机器人早期从计划发出的机器人的运动发散,即,由于例如内在的动态不确定性或外在环境干扰,即使机器人的运动分歧,时间一致的运动计划也保持最佳。我们的主要贡献是一种计算 - 避免多种代理的算法算法,避免呈现时间一致的解决方案。我们展示了我们在两位和三位玩家模拟驾驶场景中的方法,其中我们的方法为所有代理商提供了安全控制策略。
translated by 谷歌翻译
游戏理论运动计划者是控制多个高度交互式机器人系统的有效解决方案。大多数现有的游戏理论规划师不切实际地假设所有代理都可以使用先验的目标功能知识。为了解决这个问题,我们提出了一个容忍度的退缩水平游戏理论运动计划者,该计划者利用了与意图假设的可能性相互交流。具体而言,机器人传达其目标函数以结合意图。离散的贝叶斯过滤器旨在根据观察到的轨迹与传达意图的轨迹之间的差异来实时推断目标。在仿真中,我们考虑了三种安全至关重要的自主驾驶场景,即超车,车道交叉和交叉点,以证明我们计划者在存在通信网络中存在错误的传输情况下利用替代意图假设来产生安全轨迹的能力。
translated by 谷歌翻译
Dynamic game arises as a powerful paradigm for multi-robot planning, for which safety constraint satisfaction is crucial. Constrained stochastic games are of particular interest, as real-world robots need to operate and satisfy constraints under uncertainty. Existing methods for solving stochastic games handle chance constraints using exponential penalties with hand-tuned weights. However, finding a suitable penalty weight is nontrivial and requires trial and error. In this paper, we propose the chance-constrained iterative linear-quadratic stochastic games (CCILQGames) algorithm. CCILQGames solves chance-constrained stochastic games using the augmented Lagrangian method. We evaluate our algorithm in three autonomous driving scenarios, including merge, intersection, and roundabout. Experimental results and Monte Carlo tests show that CCILQGames can generate safe and interactive strategies in stochastic environments.
translated by 谷歌翻译
尽管动态游戏为建模代理的互动提供了丰富的范式,但为现实世界应用程序解决这些游戏通常具有挑战性。许多现实的交互式设置涉及一般的非线性状态和输入约束,它们彼此之间的决策相结合。在这项工作中,我们使用约束的游戏理论框架开发了一个高效且快速的计划者,用于在受限设置中进行交互式计划。我们的关键见解是利用代理的目标和约束功能的特殊结构,这些功能在多代理交互中进行快速和可靠的计划。更确切地说,我们确定了代理成本功能的结构,在该结构下,由此产生的动态游戏是受约束潜在动态游戏的实例。受限的潜在动态游戏是一类游戏,而不是解决一组耦合的约束最佳控制问题,而是通过解决单个约束最佳控制问题来找到NASH平衡。这简化了限制的交互式轨迹计划。我们比较了涉及四个平面代理的导航设置中方法的性能,并表明我们的方法平均比最先进的速度快20倍。我们进一步在涉及一个四型和两个人的导航设置中对我们提出的方法提供了实验验证。
translated by 谷歌翻译
Many autonomous agents, such as intelligent vehicles, are inherently required to interact with one another. Game theory provides a natural mathematical tool for robot motion planning in such interactive settings. However, tractable algorithms for such problems usually rely on a strong assumption, namely that the objectives of all players in the scene are known. To make such tools applicable for ego-centric planning with only local information, we propose an adaptive model-predictive game solver, which jointly infers other players' objectives online and computes a corresponding generalized Nash equilibrium (GNE) strategy. The adaptivity of our approach is enabled by a differentiable trajectory game solver whose gradient signal is used for maximum likelihood estimation (MLE) of opponents' objectives. This differentiability of our pipeline facilitates direct integration with other differentiable elements, such as neural networks (NNs). Furthermore, in contrast to existing solvers for cost inference in games, our method handles not only partial state observations but also general inequality constraints. In two simulated traffic scenarios, we find superior performance of our approach over both existing game-theoretic methods and non-game-theoretic model-predictive control (MPC) approaches. We also demonstrate our approach's real-time planning capabilities and robustness in two hardware experiments.
translated by 谷歌翻译
密集的安全导航,城市驾驶环境仍然是一个开放的问题和一个活跃的研究领域。与典型的预测 - 计划方法不同,游戏理论规划考虑了一辆车的计划如何影响另一个车辆的行为。最近的工作表明,在具有非线性目标和约束的普通和游戏中找到当地纳什均衡所需的时间重大改进。当狡辩到驾驶时,这些作品假设场景中的所有车辆一起玩游戏,这可能导致密集流量的难治性计算时间。我们通过假设代理商在他们的观察附近玩游戏的代理商来制定分散的游戏理论规划方法,我们认为我们认为是人类驾驶的更合理的假设。游戏是并行播放的,以进行交互图的所有强烈连接的组件,显着减少了每个游戏中的玩家和约束的数量,从而减少了规划所需的时间。我们证明我们的方法可以通过比较智能驱动程序模型和集中式游戏理论规划在互动数据集中的环形交叉路口时,通过比较智能驱动程序模型和集中式游戏理论规划的性能来实现无碰撞,高效的驾驶。我们的实现可在http://github.com/sisl/decnashplanning获取。
translated by 谷歌翻译
在多游戏设置中运行的机器人必须同时对共享环境的人类或机器人代理的环境和行为进行建模。通常使用同时定位和映射(SLAM)进行这种建模;但是,SLAM算法通常忽略了多人相互作用。相比之下,运动计划文献经常使用动态游戏理论来在具有完美本地化的已知环境中明确对多个代理的非合作相互作用进行建模。在这里,我们介绍了GTP-Slam,这是一种基于迭代最佳响应的小说最佳SLAM算法,可以准确执行状态定位和映射重建,同时使用游戏理论先验来捕获未知场景中多个代理之间固有的非合作互动。通过将基本的大满贯问题作为潜在游戏,我们继承了强有力的融合保证。经验结果表明,当部署在现实的交通模拟中时,我们的方法比在广泛的噪声水平上的标准捆绑捆绑调整算法更准确地进行本地化和映射。
translated by 谷歌翻译
Reach-避免最佳控制问题,其中系统必须在保持某些目标条件的同时保持清晰的不可接受的故障模式,是自主机器人系统的安全和活力保证的核心,但它们的确切解决方案是复杂的动态和环境的难以解决。最近的钢筋学习方法的成功与绩效目标大致解决最佳控制问题,使其应用​​于认证问题有吸引力;然而,加固学习中使用的拉格朗日型客观不适合编码时间逻辑要求。最近的工作表明,在将加强学习机械扩展到安全型问题时,其目标不是总和,但随着时间的推移最小(或最大)。在这项工作中,我们概括了加强学习制定,以处理覆盖范围的所有最佳控制问题。我们推出了一个时间折扣 - 避免了收缩映射属性的贝尔曼备份,并证明了所得达到避免Q学习算法在类似条件下会聚到传统的拉格朗郎类型问题,从而避免任意紧凑的保守近似值放。我们进一步证明了这种配方利用深度加强学习方法,通过将近似解决方案视为模型预测监督控制框架中的不受信任的oracles来保持零违规保证。我们评估我们在一系列非线性系统上的提出框架,验证了对分析和数值解决方案的结果,并通过Monte Carlo仿真在以前的棘手问题中。我们的结果为一系列基于学习的自治行为开放了大门,具有机器人和自动化的应用。有关代码和补充材料,请参阅https://github.com/saferoboticslab/safett_rl。
translated by 谷歌翻译
本文提出了一种新的规划和控制策略,用于赛车场景中的多辆车竞争。所提出的赛车策略在两种模式之间切换。当没有周围的车辆时,使用基于学习的模型预测控制(MPC)轨迹策划器用于保证自助车辆更好地实现了更好的搭接定时。当EGO车辆与其他围绕车辆竞争以超车时,基于优化的策划器通过并行计算产生多个动态可行的轨迹。每个轨迹在MPC配方下进行优化,其具有不同的同型贝塞尔曲线参考路径,横向于周围的车辆之间。选择这些不同的同型轨迹之间的时间最佳轨迹,并使用具有障碍物避免约束的低级MPC控制器来保证系统的安全性能。所提出的算法具有能够生成无碰撞轨迹并跟踪它们,同时提高杠杆定时性能,稳定的低计算复杂性,优于汽车赛车环境的时序和性能中的现有方法。为了展示我们的赛车策略的表现,我们在轨道上模拟了多个随机生成的移动车辆,并测试自我车辆的超越机动。
translated by 谷歌翻译
在自主驾驶的背景下,已知迭代线性二次调节器(ILQR)是在运动计划问题中处理非线性车辆模型的有效方法。特别是,受约束的ILQR算法在不同类型的一般限制下实现运动计划任务方面表现出了值得注意的计算效率结果。但是,受约束的ILQR方法需要在使用对数屏障函数时在第一次迭代时作为先决条件进行可行的轨迹。同样,该方法为纳入快速,高效和有效的优化方法开辟了可能性,以进一步加快优化过程,从而可以成功地满足实时实施的要求。在本文中,定义明确的运动计划问题是在非线性车辆动力学和各种约束下提出的,并利用了乘数的交替方向方法来确定利用ILQR的最佳控制动作。该方法能够在第一次迭代时规避轨迹的可行性要求。然后研究了自动驾驶汽车运动计划的说明性示例。拟议的开发实现了高度计算效率的值得注意的成就。与基于对数屏障函数的约束ILQR算法进行比较,我们提出的方法在三种驾驶场景中,平均计算时间降低了31.93%,38.52%和44.57%;与优化求解器IPOPT相比,我们提出的方法将平均计算时间降低了46.02%,53.26%和88.43%。结果,可以通过我们提出的框架实现实时计算和实施,因此它为公路驾驶任务提供了额外的安全性。
translated by 谷歌翻译
We develop a hierarchical controller for head-to-head autonomous racing. We first introduce a formulation of a racing game with realistic safety and fairness rules. A high-level planner approximates the original formulation as a discrete game with simplified state, control, and dynamics to easily encode the complex safety and fairness rules and calculates a series of target waypoints. The low-level controller takes the resulting waypoints as a reference trajectory and computes high-resolution control inputs by solving an alternative formulation with simplified objectives and constraints. We consider two approaches for the low-level planner, constructing two hierarchical controllers. One approach uses multi-agent reinforcement learning (MARL), and the other solves a linear-quadratic Nash game (LQNG) to produce control inputs. The controllers are compared against three baselines: an end-to-end MARL controller, a MARL controller tracking a fixed racing line, and an LQNG controller tracking a fixed racing line. Quantitative results show that the proposed hierarchical methods outperform their respective baseline methods in terms of head-to-head race wins and abiding by the rules. The hierarchical controller using MARL for low-level control consistently outperformed all other methods by winning over 88% of head-to-head races and more consistently adhered to the complex racing rules. Qualitatively, we observe the proposed controllers mimicking actions performed by expert human drivers such as shielding/blocking, overtaking, and long-term planning for delayed advantages. We show that hierarchical planning for game-theoretic reasoning produces competitive behavior even when challenged with complex rules and constraints.
translated by 谷歌翻译
作为自动驾驶系统的核心部分,运动计划已受到学术界和行业的广泛关注。但是,由于非体力学动力学,尤其是在存在非结构化的环境和动态障碍的情况下,没有能够有效的轨迹计划解决方案能够为空间周期关节优化。为了弥合差距,我们提出了一种多功能和实时轨迹优化方法,该方法可以在任意约束下使用完整的车辆模型生成高质量的可行轨迹。通过利用类似汽车的机器人的差异平坦性能,我们使用平坦的输出来分析所有可行性约束,以简化轨迹计划问题。此外,通过全尺寸多边形实现避免障碍物,以产生较少的保守轨迹,并具有安全保证,尤其是在紧密约束的空间中。我们通过最先进的方法介绍了全面的基准测试,这证明了所提出的方法在效率和轨迹质量方面的重要性。现实世界实验验证了我们算法的实用性。我们将发布我们的代码作为开源软件包,目的是参考研究社区。
translated by 谷歌翻译
一般而言,融合是人类驱动因素和自治车辆的具有挑战性的任务,特别是在密集的交通中,因为合并的车辆通常需要与其他车辆互动以识别或创造间隙并安全合并。在本文中,我们考虑了强制合并方案的自主车辆控制问题。我们提出了一种新的游戏 - 理论控制器,称为领导者跟随者游戏控制器(LFGC),其中自主EGO车辆和其他具有先验不确定驾驶意图的车辆之间的相互作用被建模为部分可观察到的领导者 - 跟随游戏。 LFGC估计基于观察到的轨迹的其他车辆在线在线,然后预测其未来的轨迹,并计划使用模型预测控制(MPC)来同时实现概率保证安全性和合并目标的自我车辆自己的轨迹。为了验证LFGC的性能,我们在模拟和NGSIM数据中测试它,其中LFGC在合并中展示了97.5%的高成功率。
translated by 谷歌翻译
Robots such as autonomous vehicles and assistive manipulators are increasingly operating in dynamic environments and close physical proximity to people. In such scenarios, the robot can leverage a human motion predictor to predict their future states and plan safe and efficient trajectories. However, no model is ever perfect -- when the observed human behavior deviates from the model predictions, the robot might plan unsafe maneuvers. Recent works have explored maintaining a confidence parameter in the human model to overcome this challenge, wherein the predicted human actions are tempered online based on the likelihood of the observed human action under the prediction model. This has opened up a new research challenge, i.e., \textit{how to compute the future human states online as the confidence parameter changes?} In this work, we propose a Hamilton-Jacobi (HJ) reachability-based approach to overcome this challenge. Treating the confidence parameter as a virtual state in the system, we compute a parameter-conditioned forward reachable tube (FRT) that provides the future human states as a function of the confidence parameter. Online, as the confidence parameter changes, we can simply query the corresponding FRT, and use it to update the robot plan. Computing parameter-conditioned FRT corresponds to an (offline) high-dimensional reachability problem, which we solve by leveraging recent advances in data-driven reachability analysis. Overall, our framework enables online maintenance and updates of safety assurances in human-robot interaction scenarios, even when the human prediction model is incorrect. We demonstrate our approach in several safety-critical autonomous driving scenarios, involving a state-of-the-art deep learning-based prediction model.
translated by 谷歌翻译
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies -- these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this paper, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this paper will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
translated by 谷歌翻译
为了实现安全的自动驾驶汽车(AV)操作,至关重要的是,AV的障碍检测模块可以可靠地检测出构成安全威胁的障碍物(即是安全至关重要的)。因此,希望对感知系统的评估指标捕获对象的安全性 - 临界性。不幸的是,现有的感知评估指标倾向于对物体做出强烈的假设,而忽略了代理之间的动态相互作用,因此不能准确地捕获现实中的安全风险。为了解决这些缺点,我们通过考虑自我车辆和现场障碍之间的闭环动态相互作用来引入互动障碍感知障碍检测评估度量指标。通过从最佳控制理论借用现有理论,即汉密尔顿 - 雅各比的可达性,我们提出了一种可构造``安全区域''的计算障碍方法:一个国家空间中的一个区域,该区域定义了安全 - 关键障碍为了定义安全目的的位置指标。我们提出的安全区已在数学上完成,并且可以轻松计算以反映各种安全要求。使用Nuscenes检测挑战排行榜的现成检测算法,我们证明我们的方法是计算轻量级,并且可以更好地捕获与基线方法更好地捕获关键的安全感知错误。
translated by 谷歌翻译
具有许多移动代理的城市环境的运动计划可以看作是组合问题。通过在左右之后,左右或左后通过障碍物,自动驾驶汽车可以选择执行多个选项。这些组合方面需要在计划框架中考虑到。我们通过提出一种结合轨迹计划和操纵推理的新型计划方法来解决这个问题。我们定义了沿参考曲线的动态障碍的分类,使我们能够提取战术决策序列。我们将纵向和横向运动分开,以加快基于优化的轨迹计划。为了将获得的轨迹集绘制为操纵变体,我们定义了一种语义来描述它们。这使我们能够选择最佳轨迹,同时还可以确保随着时间的推移操纵的一致性。我们证明了我们的方法的能力,即仍被普遍认为是具有挑战性的场景。
translated by 谷歌翻译
在本文中,我们在局部不同的牵引条件下解决了处理限制的运动规划和控制问题。我们提出了一种新的解决方案方法,其中通过源自预测摩擦估计来表示预测地平线上的牵引变化。在后退地平线时装解决了约束的有限时间最佳控制问题,施加了这些时变的约束。此外,我们的方法具有集成的采样增强程序,该过程解决了对突然约束改变而产生的局部最小值的不可行性和敏感性的问题,例如,由于突然的摩擦变化。我们在一系列临界情景中验证了沃尔沃FH16重型车辆的提议算法。实验结果表明,通过确保计划运动的动态可行性,通过确保高牵引利用时,牵引自适应运动规划和控制改善了避免事故的车辆的能力,既通过适应低局部牵引。
translated by 谷歌翻译
现代机器人需要准确的预测才能在现实世界中做出最佳决策。例如,自动驾驶汽车需要对其他代理商的未来行动进行准确的预测来计划安全轨迹。当前方法在很大程度上依赖历史时间序列来准确预测未来。但是,完全依靠观察到的历史是有问题的,因为它可能被噪声损坏,有离群值或不能完全代表所有可能的结果。为了解决这个问题,我们提出了一个新的框架,用于生成用于机器人控制的强大预测。为了建模影响未来预测的现实世界因素,我们介绍了对手的概念,对敌人观察到了历史时间序列,以增加机器人的最终控制成本。具体而言,我们将这种交互作用建模为机器人的预报器和这个假设对手之间的零和两人游戏。我们证明,我们建议的游戏可以使用基于梯度的优化技术来解决本地NASH均衡。此外,我们表明,经过我们方法训练的预报员在分布外现实世界中的变化数据上的效果要比基线比基线更好30.14%。
translated by 谷歌翻译
自主赛车奖的代理商对反对者的行为做出反应,并以敏捷的操纵向沿着赛道前进,同时惩罚过度侵略性和过度保守的代理商。了解其他代理的意图对于在对抗性多代理环境中部署自主系统至关重要。当前的方法要么过分简化代理的动作空间的离散化,要么无法识别行动的长期影响并成为近视。我们的工作重点是应对这两个挑战。首先,我们提出了一种新颖的降低方法,该方法封装了不同的代理行为,同时保留了代理作用的连续性。其次,我们将两种代理赛车游戏制定为遗憾的最小化问题,并通过遗憾的预测模型为可行的反事实遗憾最小化提供了解决方案。最后,我们在规模的自动驾驶汽车上实验验证了我们的发现。我们证明,使用拟议的游戏理论规划师使用代理表征与客观空间显着提高了对不同对手的获胜率,并且在看不见的环境中,改进可以转移到看不见的对手。
translated by 谷歌翻译