时间序列形状是最近发现对时间序列聚类有效(TSC)有效的歧视子序列。形状方便地解释簇。因此,TSC的主要挑战是发现高质量的可变长度形状以区分不同的簇。在本文中,我们提出了一种新型的自动编码器窗帘方法(AutoShape),这是第一次利用自动编码器和塑形器以不受欢迎的方式确定形状的研究。自动编码器的专门设计用于学习高质量的形状。更具体地说,为了指导潜在的表示学习,我们采用了最新的自我监督损失来学习不同变量的可变长度塑形塑形(时间序列子序列)的统一嵌入,并提出多样性损失,以选择歧视嵌入的嵌入方式统一空间。我们介绍了重建损失,以在原始时间序列空间中恢复形状,以进行聚类。最后,我们采用Davies Bouldin指数(DBI),将学习过程中的聚类性能告知AutoShape。我们介绍了有关自动赛的广泛实验。为了评估单变量时间序列(UTS)的聚类性能,我们将AutoShape与使用UCR存档数据集的15种代表性方法进行比较。为了研究多元时间序列(MTS)的性能,我们使用5种竞争方法评估了30个UEA档案数据集的AutoShape。结果证明了AutoShape是所有比较的方法中最好的。我们用形状来解释簇,并可以在三个UTS案例研究和一个MTS案例研究中获得有关簇的有趣直觉。
translated by 谷歌翻译
Recently the deep learning has shown its advantage in representation learning and clustering for time series data. Despite the considerable progress, the existing deep time series clustering approaches mostly seek to train the deep neural network by some instance reconstruction based or cluster distribution based objective, which, however, lack the ability to exploit the sample-wise (or augmentation-wise) contrastive information or even the higher-level (e.g., cluster-level) contrastiveness for learning discriminative and clustering-friendly representations. In light of this, this paper presents a deep temporal contrastive clustering (DTCC) approach, which for the first time, to our knowledge, incorporates the contrastive learning paradigm into the deep time series clustering research. Specifically, with two parallel views generated from the original time series and their augmentations, we utilize two identical auto-encoders to learn the corresponding representations, and in the meantime perform the cluster distribution learning by incorporating a k-means objective. Further, two levels of contrastive learning are simultaneously enforced to capture the instance-level and cluster-level contrastive information, respectively. With the reconstruction loss of the auto-encoder, the cluster distribution loss, and the two levels of contrastive losses jointly optimized, the network architecture is trained in a self-supervised manner and the clustering result can thereby be obtained. Experiments on a variety of time series datasets demonstrate the superiority of our DTCC approach over the state-of-the-art.
translated by 谷歌翻译
时间序列数据来自内容互联网(物联网)基础设施,连接和可穿戴设备,遥感,自主驾驶研究以及巨大的卷中的遥感。本文调查了对这些时间系列的无监督代表学习的潜力。在本文中,我们使用新的数据转换以及新颖的无监督学习制度,将学习从其他域转移到时间序列,前者在非常大的标记数据集上受到严重培训的广泛培训。我们通过时间序列聚类进行广泛的实验来证明所提出的方法的潜力。
translated by 谷歌翻译
无监督的异常检测旨在通过在正常数据上训练来建立模型以有效地检测看不见的异常。尽管以前的基于重建的方法取得了富有成效的进展,但由于两个危急挑战,他们的泛化能力受到限制。首先,训练数据集仅包含正常模式,这限制了模型泛化能力。其次,现有模型学到的特征表示通常缺乏代表性,妨碍了保持正常模式的多样性的能力。在本文中,我们提出了一种称为自适应存储器网络的新方法,具有自我监督的学习(AMSL)来解决这些挑战,并提高无监督异常检测中的泛化能力。基于卷积的AutoEncoder结构,AMSL包含一个自我监督的学习模块,以学习一般正常模式和自适应内存融合模块来学习丰富的特征表示。四个公共多变量时间序列数据集的实验表明,与其他最先进的方法相比,AMSL显着提高了性能。具体而言,在具有9亿个样本的最大帽睡眠阶段检测数据集上,AMSL以精度和F1分数\ TextBF {4} \%+优于第二个最佳基线。除了增强的泛化能力之外,AMSL还针对输入噪声更加强大。
translated by 谷歌翻译
特征提取方法有助于降低维度并捕获相关信息。在时间序列预测(TSF)中,功能可以用作辅助信息,以实现更好的准确性。传统上,TSF中使用的功能是手工制作的,需要域知识和重要的数据工程工作。在这项研究中,我们首先介绍了静态和动态功能的概念,然后使我们能够开发自主功能,以检索不需要域知识的静态特征(FRAN)的自动回归网络(FRAN)。该方法基于CNN分类器,该分类器经过训练,可以为每个系列创建一个集体和独特的类表示,要么是从该系列的部分中或(如果可以使用的类标签),从一组同一类中。它允许以相似的行为区分序列,但要从不同的类别中进行区分,并使从分类器提取的特征具有最大歧视性。我们探讨了我们功能的解释性,并评估预测元学习环境中该方法的预测能力。我们的结果表明,在大多数情况下,我们的功能会提高准确性。一旦训练,我们的方法就会创建比统计方法快的阶数级级。
translated by 谷歌翻译
Clustering analysis of sequence data continues to address many applications in engineering design, aided with the rapid growth of machine learning in applied science. This paper presents an unsupervised machine learning algorithm to extract defining characteristics of earthquake ground-motion records, also called latent features, to aid in ground-motion clustering and selection. In this context, a latent feature is a low dimensional machine-discovered spectral characteristic learned through nonlinear relationships of a neural network autoencoder. Clustering can be performed on the latent features and used to select a representative archetypal subgroup from a large ground-motion suite. The objective of efficient ground-motion selection is to choose records representative of what the structure will probabilistically experience in its lifetime. Three examples are presented to validate this approach, including a synthetic spectral dataset and spectra from field recorded ground-motion records. Deep embedding clustering of ground motion spectra improves on the results of static feature extraction, utilizing characteristics that represent the sparse spectral content of ground motions.
translated by 谷歌翻译
最近,自我监督的表示学习(SSRL)在计算机视觉,语音,自然语言处理(NLP)以及最近的其他类型的模式(包括传感器的时间序列)中引起了很多关注。自我监督学习的普及是由传统模型通常需要大量通知数据进行培训的事实所驱动的。获取带注释的数据可能是一个困难且昂贵的过程。已经引入了自我监督的方法,以通过使用从原始数据自由获得的监督信号对模型进行判别预训练来提高训练数据的效率。与现有的对SSRL的评论不同,该评论旨在以单一模式为重点介绍CV或NLP领域的方法,我们旨在为时间数据提供对多模式自我监督学习方法的首次全面审查。为此,我们1)提供现有SSRL方法的全面分类,2)通过定义SSRL框架的关键组件来引入通用管道,3)根据其目标功能,网络架构和潜在应用程序,潜在的应用程序,潜在的应用程序,比较现有模型, 4)查看每个类别和各种方式中的现有多模式技术。最后,我们提出了现有的弱点和未来的机会。我们认为,我们的工作对使用多模式和/或时间数据的域中SSRL的要求有了一个观点
translated by 谷歌翻译
特征选择是机器学习的重要过程。它通过选择对预测目标贡献最大的功能来构建一个可解释且健壮的模型。但是,大多数成熟的特征选择算法,包括受监督和半监督,无法完全利用特征之间的复杂潜在结构。我们认为,这些结构对于特征选择过程非常重要,尤其是在缺乏标签并且数据嘈杂的情况下。为此,我们创新地向特征选择问题(即基于批量注意的自我划分特征选择(A-SFS))进行了创新的深入的自我监督机制。首先,多任务自我监督的自动编码器旨在在两个借口任务的支持下揭示功能之间的隐藏结构。在来自多自制的学习模型的集成信息的指导下,批处理注意机制旨在根据基于批处理的特征选择模式产生特征权重,以减轻少数嘈杂数据引入的影响。将此方法与14个主要强大基准进行了比较,包括LightGBM和XGBoost。实验结果表明,A-SFS在大多数数据集中达到了最高的精度。此外,这种设计大大降低了对标签的依赖,仅需1/10个标记的数据即可达到与那些先进的基线相同的性能。结果表明,A-SFS对于嘈杂和缺少数据也是最强大的。
translated by 谷歌翻译
自我监督的学习(SSL)已成为无需人类注释而产生不变表示的流行方法。但是,通过在输入数据上利用先前的在线转换功能来实现所需的不变表示。结果,每个SSL框架都是针对特定数据类型(例如,视觉数据)定制的,如果将其用于其他数据集类型,则需要进行进一步的修改。另一方面,是一个通用且广泛适用的框架的自动编码器(AE),主要集中于缩小尺寸,不适合学习不变表示。本文提出了一个基于阻止退化解决方案的受限自我标签分配过程的通用SSL框架。具体而言,先前的转换函数被用无监督的对抗训练的训练过程得出,以实现不变表示。通过自我转化机制,可以从相同的输入数据生成成对的增强实例。最后,基于对比度学习的培训目标是通过利用自我标签分配和自我转化机制来设计的。尽管自我转化过程非常通用,但拟议的培训策略的表现优于基于AE结构的大多数最先进的表示方法。为了验证我们的方法的性能,我们对四种类型的数据进行实验,即视觉,音频,文本和质谱数据,并用四个定量指标进行比较。我们的比较结果表明,所提出的方法证明了鲁棒性并成功识别数据集中的模式。
translated by 谷歌翻译
被动射频(RF)感测和对老年护理房屋的人类日常活动监测是一个新兴的话题。微多普勒雷达是一种吸引人的解决方案,考虑到它们的非侵入性,深渗透和高距离范围。尽管在真实情景中未标记或较差的活动的情况下,但是使用多普勒雷达数据的无监督活动识别尚未得到注意。本研究提出了使用多普勒流的人类活动监测的两个无监督特征提取方法。这些包括基于局部离散余弦变换(DCT)的特征提取方法和基于局部熵的特征提取方法。此外,对于多普勒雷达数据,首次采用了卷积变分性自动化器(CVAE)特征提取的新应用。将三种特征提取架构与先前使用的卷积AutoEncoder(CAE)和基于主成分分析(PCA)和2DPCA的线性特征提取进行比较。使用K-Means和K-METOIDS进行无监督的聚类。结果表明,与CAE,PCA和2DPCA相比,基于DCT的方法,基于熵的方法和CVAE特征的优越性,具有超过5 \%-20 \%的平均精度。关于计算时间,两个提出的方法明显比现有的CVAE快得多。此外,对于高维数据可视化,考虑了三种歧管学习技术。比较方法,以对原始数据的投影以及编码的CVAE特征进行比较。当应用于编码的CVAE特征时,所有三种方法都显示出改善的可视化能力。
translated by 谷歌翻译
The latent space of autoencoders has been improved for clustering image data by jointly learning a t-distributed embedding with a clustering algorithm inspired by the neighborhood embedding concept proposed for data visualization. However, multivariate tabular data pose different challenges in representation learning than image data, where traditional machine learning is often superior to deep tabular data learning. In this paper, we address the challenges of learning tabular data in contrast to image data and present a novel Gaussian Cluster Embedding in Autoencoder Latent Space (G-CEALS) algorithm by replacing t-distributions with multivariate Gaussian clusters. Unlike current methods, the proposed approach independently defines the Gaussian embedding and the target cluster distribution to accommodate any clustering algorithm in representation learning. A trained G-CEALS model extracts a quality embedding for unseen test data. Based on the embedding clustering accuracy, the average rank of the proposed G-CEALS method is 1.4 (0.7), which is superior to all eight baseline clustering and cluster embedding methods on seven tabular data sets. This paper shows one of the first algorithms to jointly learn embedding and clustering to improve multivariate tabular data representation in downstream clustering.
translated by 谷歌翻译
TimeSeries Partitioning是大多数机器学习驱动的传感器的IOT应用程序的重要步骤。本文介绍了一种采样效率,鲁棒,时序分割模型和算法。我们表明,通过基于最大平均差异(MMD)的分割目标来学习特定于分割目标的表示,我们的算法可以鲁布布地检测不同应用程序的时间序列事件。我们的损耗功能允许我们推断是否从相同的分布(空假设)中绘制了连续的样本序列,并确定拒绝零假设的对之间的变化点(即,来自不同的分布)。我们展示了其在基于环境传感的活动识别的实际IOT部署中的适用性。此外,虽然文献中存在许多关于变更点检测的作品,但我们的模型明显更简单,匹配或优于最先进的方法。我们可以平均地在9-93秒内完全培训我们的模型,而在不同应用程序上的数据的差异很小。
translated by 谷歌翻译
现代工业设施在生产过程中生成大量的原始传感器数据。该数据用于监视和控制过程,可以分析以检测和预测过程异常。通常,数据必须由专家注释,以进一步用于预测建模。当今的大多数研究都集中在需要手动注释数据的无监督异常检测算法或监督方法上。这些研究通常是使用过程模拟器生成的狭窄事件类别的数据进行的,并且在公开可用的数据集上很少验证建议的算法。在本文中,我们提出了一种新型的方法,用于用于工业化学传感器数据的无监督故障检测和诊断。我们根据具有各种故障类型的田纳西州伊士曼进程的两个公开数据集证明了我们的模型性能。结果表明,我们的方法显着优于现有方法(固定FPR的+0.2-0.3 TPR),并在不使用专家注释的情况下检测大多数过程故障。此外,我们进行了实验,以证明我们的方法适用于未提前不知道故障类型数量的现实世界应用。
translated by 谷歌翻译
采用基于数据的方法会导致许多石油和天然气记录数据处理问题的模型改进。由于深度学习提供的新功能,这些改进变得更加合理。但是,深度学习的使用仅限于研究人员拥有大量高质量数据的领域。我们提出了一种提供通用数据表示的方法,适用于针对不同油田的不同问题的解决方案,而少量数据。我们的方法依赖于从井的间隔内进行连续记录数据的自我监督方法,因此从一开始就不需要标记的数据。为了验证收到的表示形式,我们考虑分类和聚类问题。我们还考虑转移学习方案。我们发现,使用变异自动编码器会导致最可靠,最准确的模型。方法我们还发现,研究人员只需要一个针对目标油田的微小单独的数据集即可在通用表示之上解决特定问题。
translated by 谷歌翻译
紧凑和节能的可穿戴传感器的发展导致生物信号的可用性增加。为了分析这些连续记录的,通常是多维的时间序列,能够进行有意义的无监督数据分割是一个吉祥的目标。实现这一目标的一种常见方法是将时间序列中的变更点确定为分割基础。但是,传统的更改点检测算法通常带有缺点,从而限制了其现实世界的适用性。值得注意的是,他们通常依靠完整的时间序列可用,因此不能用于实时应用程序。另一个常见的限制是,它们处理多维时间序列的分割(或无法)。因此,这项工作的主要贡献是提出一种新型的无监督分段算法,用于多维时间序列,名为潜在空间无监督的语义细分(LS-USS),该算法旨在轻松地与在线和批处理数据一起使用。在将LS-USS与其他最先进的更改点检测算法进行比较时,在各种现实世界数据集上,在离线和实时设置中,LS-USS在PAR或更好的性能上都可以系统地实现。
translated by 谷歌翻译
现有的深度嵌入聚类工作仅考虑最深层的学习功能嵌入,因此未能利用来自群集分配的可用辨别信息,从而产生性能限制。为此,我们提出了一种新颖的方法,即深入关注引导的图形聚类与双自我监督(DAGC)。具体地,DAGC首先利用异质性 - 方向融合模块,以便于在每个层中自适应地集成自动编码器的特征和图形卷积网络,然后使用尺度明智的融合模块动态地连接不同层中的多尺度特征。这种模块能够通过基于注意的机制学习歧视特征。此外,我们设计了一种分配明智的融合模块,它利用群集分配直接获取聚类结果。为了更好地探索集群分配的歧视信息,我们开发了一种双重自我监督解决方案,包括软自我监督策略,具有三联kullback-Leibler发散损失和具有伪监督损失的硬自我监督策略。广泛的实验验证了我们的方法在六个基准数据集中始终如一地优于最先进的方法。特别是,我们的方法通过最佳基线超过18.14%的方法将ARI提高。
translated by 谷歌翻译
不完整的多视图聚类旨在通过使用来自多种模式的数据来增强聚类性能。尽管已经提出了几种研究此问题的方法,但以下缺点仍然存在:1)很难学习潜在的互补性但不使用标签信息而保持一致性的潜在表示; 2)因此,当完整的数据稀缺时,在不完整的数据中未能充分利用不完整数据中的隐藏信息会导致次优群集性能。在本文中,我们提出了与生成对抗网络(CIMIC-GAN)的对比度不完整的多视图图像聚类,该网络使用GAN填充不完整的数据并使用双对比度学习来学习完整和不完整的数据的一致性。更具体地说,考虑到多种方式之间的多样性和互补信息,我们将完整和不完整数据的自动编码表示为双对比度学习,以实现学习一致性。将gan集成到自动编码过程中不仅可以充分利用不完整数据的新功能,而且可以在存在高数据缺失率的情况下更好地概括该模型。在\ textColor {black} {四}广泛使用的数据集上进行的实验表明,cimic-gan优于最先进的不完整的多视图聚类方法。
translated by 谷歌翻译
深度聚类最近引起了极大的关注。尽管取得了显着的进展,但以前的大多数深度聚类作品仍有两个局限性。首先,其中许多集中在某些基于分布的聚类损失上,缺乏通过对比度学习来利用样本(或增强)关系的能力。其次,他们经常忽略了间接样本结构信息,从而忽略了多尺度邻里结构学习的丰富可能性。鉴于这一点,本文提出了一种新的深聚类方法,称为图像聚类,其中包括对比度学习和多尺度图卷积网络(IcicleGCN),该网络(ICICELGCN)也弥合了卷积神经网络(CNN)和图形卷积网络(GCN)之间的差距。作为对比度学习与图像聚类任务的多尺度邻域结构学习之间的差距。所提出的IcicleGCN框架由四个主要模块组成,即基于CNN的主链,实例相似性模块(ISM),关节群集结构学习和实例重建模块(JC-SLIM)和多尺度GCN模块(M -GCN)。具体而言,在每个图像上执行了两个随机增强,使用两个重量共享视图的骨干网络用于学习增强样品的表示形式,然后将其馈送到ISM和JC-SLIM以进行实例级别和集群级别的对比度分别学习。此外,为了实施多尺度的邻域结构学习,通过(i)通过(i)层次融合的层相互作用和(ii)共同自适应学习确保他们的最后一层,同时对两个GCN和自动编码器进行了同时培训。层输出分布保持一致。多个图像数据集上的实验证明了IcicleGCN优于最先进的群集性能。
translated by 谷歌翻译
由于其通过深层神经网络的共同表示学习和聚类的能力,近年来,深层聚类引起了人们的关注。在其最新发展中,对比度学习已成为一种有效的技术,可实质性地提高深度聚类的性能。但是,现有的基于学习的基于对比的深层聚类算法主要集中于一些精心设计的增强(通常具有有限的转换以保留结构),被称为薄弱的增强,但不能超越弱化的增强,以探索更多的机会(随着更具侵略性的转变甚至严重的扭曲)。在本文中,我们提出了一种被称为强烈增强的对比聚类(SACC)的端到端深群集方法,该方法将传统的两夸大视图范式扩展到多种视图,并共同利用强大而弱的增强,以增强深层聚类。特别是,我们利用具有三重共享权重的骨干网络,在该网络中,强烈的增强视图和两个弱化的视图均融合在一起。基于主链产生的表示,弱进行弱化的视图对和强力视图对同时被利用用于实例级的对比度学习(通过实例投影仪)和群集级的对比度学习(通过群集投影仪),与主链一起可以以纯监督的方式共同优化。五个具有挑战性的图像数据集的实验结果表明,我们的SACC方法优于最先进的方法。该代码可在https://github.com/dengxiaozhi/sacc上找到。
translated by 谷歌翻译
聚类是一项基本的机器学习任务,在文献中已广泛研究。经典聚类方法遵循以下假设:数据通过各种表示的学习技术表示为矢量化形式的特征。随着数据变得越来越复杂和复杂,浅(传统)聚类方法无法再处理高维数据类型。随着深度学习的巨大成功,尤其是深度无监督的学习,在过去的十年中,已经提出了许多具有深层建筑的代表性学习技术。最近,已经提出了深层聚类的概念,即共同优化表示的学习和聚类,因此引起了社区的日益关注。深度学习在聚类中的巨大成功,最基本的机器学习任务之一以及该方向的最新进展的巨大成功所激发。 - 艺术方法。我们总结了深度聚类的基本组成部分,并通过设计深度表示学习和聚类之间的交互方式对现有方法进行了分类。此外,该调查还提供了流行的基准数据集,评估指标和开源实现,以清楚地说明各种实验设置。最后但并非最不重要的一点是,我们讨论了深度聚类的实际应用,并提出了应有的挑战性主题,应将进一步的研究作为未来的方向。
translated by 谷歌翻译