在过去的几年中,按照可区分的编程范式,人们对计算物理过程的梯度信息(例如,物理模拟,图像渲染)的梯度越来越兴趣。但是,此类过程可能是不可差异的,也可能产生非信息性梯度(I.D.几乎到处都是无效的)。当面对以前的陷阱时,通过分析表达或数值技术(例如自动分化和有限差异)估算的梯度使经典优化方案融合到质量较差的解决方案中。因此,仅依靠这些梯度提供的本地信息通常不足以解决涉及此类物理过程的高级优化问题,尤其是当它们受到非平滑度和不稳定性问题的影响。零订单优化,我们通过估计邻域中的梯度来利用随机平滑来增强可微分的物理。我们的实验表明,在优化算法中整合这种方法可能对像网格重建的任务相似,从图像或对机器人系统的最佳控制也有所不同。
translated by 谷歌翻译
在从机器人控制到仿真的各种机器人应用中,碰撞检测似乎是规范操作,包括运动计划和估计。尽管该主题的开创性工作可以追溯到80年代,但直到最近,正确区分碰撞检测的问题才成为一个中心问题,尤其要归功于科学界围绕该主题所做的持续和各种努力物理。然而,到目前为止,很少有人提出过解决方案,并且只有对所涉及形状的性质的强烈假设。在这项工作中,我们引入了一种通用和高效的方法,以计算任何一对凸形的碰撞检测的导数,这是通过尤其利用随机平滑技术而显示的,这些技术特别适合于捕获非平滑问题的衍生物。这种方法是在HPP-FCL和Pinocchio生态系统中实现的,并在机器人文献的经典数据集和问题上进行了评估,显示了很少的微秒时间来计算许多真实的机器人应用程序直接利用的信息衍生物,包括许多真实的机器人应用程序,包括可不同的模拟。
translated by 谷歌翻译
增强学习(RL)在接触式操纵中的经验成功(RL)从基于模型的角度来理解了很多待理解,其中关键困难通常归因于(i)触点模式的爆炸,(ii)僵硬,非平滑接触动力学和由此产生的爆炸 /不连续梯度,以及(iii)计划问题的非转换性。 RL的随机性质通过有效采样和平均接触模式来解决(i)和(ii)。另一方面,基于模型的方法通过分析平滑接触动力学来解决相同的挑战。我们的第一个贡献是建立两种方法的简单系统方法的理论等效性,并在许多复杂示例上提供定性和经验的等效性。为了进一步减轻(II),我们的第二个贡献是凸面的凸面,可区分和准动力的触点动力学表述,这两个方案都可以平滑方案,并且通过实验证明了对接触富含接触的计划非常有效。我们的最终贡献解决了(III),在其中我们表明,当通过平滑度抽取接触模式时,基于经典的运动计划算法在全球计划中可以有效。将我们的方法应用于具有挑战性的接触式操纵任务的集合中,我们证明了基于模型的有效运动计划可以实现与RL相当的结果,而计算却大大较少。视频:https://youtu.be/12ew4xc-vwa
translated by 谷歌翻译
We present a differentiable formulation of rigid-body contact dynamics for objects and robots represented as compositions of convex primitives. Existing optimization-based approaches simulating contact between convex primitives rely on a bilevel formulation that separates collision detection and contact simulation. These approaches are unreliable in realistic contact simulation scenarios because isolating the collision detection problem introduces contact location non-uniqueness. Our approach combines contact simulation and collision detection into a unified single-level optimization problem. This disambiguates the collision detection problem in a physics-informed manner. Compared to previous differentiable simulation approaches, our formulation features improved simulation robustness and a reduction in computational complexity by more than an order of magnitude. We illustrate the contact and collision differentiability on a robotic manipulation task requiring optimization-through-contact. We provide a numerically efficient implementation of our formulation in the Julia language called Silico.jl.
translated by 谷歌翻译
Current differentiable renderers provide light transport gradients with respect to arbitrary scene parameters. However, the mere existence of these gradients does not guarantee useful update steps in an optimization. Instead, inverse rendering might not converge due to inherent plateaus, i.e., regions of zero gradient, in the objective function. We propose to alleviate this by convolving the high-dimensional rendering function that maps scene parameters to images with an additional kernel that blurs the parameter space. We describe two Monte Carlo estimators to compute plateau-free gradients efficiently, i.e., with low variance, and show that these translate into net-gains in optimization error and runtime performance. Our approach is a straightforward extension to both black-box and differentiable renderers and enables optimization of problems with intricate light transport, such as caustics or global illumination, that existing differentiable renderers do not converge on.
translated by 谷歌翻译
布模拟在计算机动画,服装设计和机器人辅助敷料中具有广泛的应用。这项工作提出了一个可区分的布模拟器,其附加梯度信息促进了与布相关的应用。我们可区分的模拟器扩展了基于投影动力学(PD)和干摩擦接触的最先进的布模拟器。我们从以前的工作中汲取灵感,提出了一种快速新颖的方法,用于通过干摩擦接触在基于PD的布模拟中得出梯度。此外,我们对富含接触的布模拟中梯度的实用性进行了全面的分析和评估。最后,我们证明了模拟器在许多下游应用中的功效,包括系统识别,辅助调味料的轨迹优化,闭环控制,逆设计和实际降低SIM转移。我们观察到通过使用我们的梯度信息来求解大多数这些应用程序获得的大幅加速。
translated by 谷歌翻译
通常,地形几何形状是非平滑的,非线性的,非凸的,如果通过以机器人为中心的视觉单元感知,则似乎部分被遮住且嘈杂。这项工作介绍了能够实时处理上述问题的完整控制管道。我们制定了一个轨迹优化问题,该问题可以在基本姿势和立足点上共同优化,但要遵守高度图。为了避免收敛到不良的本地Optima,我们部署了逐步的优化技术。我们嵌入了一个紧凑的接触式自由稳定性标准,该标准与非平板地面公式兼容。直接搭配用作转录方法,导致一个非线性优化问题,可以在少于十毫秒内在线解决。为了在存在外部干扰的情况下增加鲁棒性,我们用动量观察者关闭跟踪环。我们的实验证明了爬楼梯,踏上垫脚石上的楼梯,并利用各种动态步态在缝隙上。
translated by 谷歌翻译
强化学习(RL)和轨迹优化(TO)具有强大的互补优势。一方面,RL方法能够直接从数据中学习全球控制策略,但通常需要大型样本量以正确地收敛于可行的策略。另一方面,对方法能够利用从模拟器提取的基于梯度的信息,以快速收敛到局部最佳控制轨迹,该轨迹仅在解决方案附近有效。在过去的十年中,几种方法旨在充分结合两类方法,以获得两全其美的最佳选择。从这一研究开始,我们提出了这些方法的一些改进,以更快地学习全球控制政策,尤其是通过通过Sobolev学习来利用敏感性信息,并增强了Lagrangian技术来实施与政策学习之间的共识。我们通过与文献中的现有方法进行比较,评估了这些改进对机器人技术各种经典任务的好处。
translated by 谷歌翻译
微弱的物理是计算机视觉和机器人的强大工具,用于了解互动的场景理解和推理。现有方法经常被限于具有预先已知的简单形状或形状的物体。在本文中,我们提出了一种新的方法来具有摩擦触点的可分解物理学,其利用符号距离场(SDF)隐含地表示物理形状。我们的模拟即使涉及的形状为非凸形表示,也支持接触点计算。此外,我们提出了区分对象形状的动力学来利用基于梯度的方法来促进形状优化。在我们的实验中,我们证明我们的方法允许从轨迹和深度图像观察的诸如摩擦系数,质量,力或形状参数的物理参数的基于模型的推断,并且在几个具有挑战性的合成场景和真实图像序列中。
translated by 谷歌翻译
机器学习的最近进步已经创造了利用一类基于坐标的神经网络来解决视觉计算问题的兴趣,该基于坐标的神经网络在空间和时间跨空间和时间的场景或对象的物理属性。我们称之为神经领域的这些方法已经看到在3D形状和图像的合成中成功应用,人体的动画,3D重建和姿势估计。然而,由于在短时间内的快速进展,许多论文存在,但尚未出现全面的审查和制定问题。在本报告中,我们通过提供上下文,数学接地和对神经领域的文学进行广泛综述来解决这一限制。本报告涉及两种维度的研究。在第一部分中,我们通过识别神经字段方法的公共组件,包括不同的表示,架构,前向映射和泛化方法来专注于神经字段的技术。在第二部分中,我们专注于神经领域的应用在视觉计算中的不同问题,超越(例如,机器人,音频)。我们的评论显示了历史上和当前化身的视觉计算中已覆盖的主题的广度,展示了神经字段方法所带来的提高的质量,灵活性和能力。最后,我们展示了一个伴随着贡献本综述的生活版本,可以由社区不断更新。
translated by 谷歌翻译
我们为双级轨迹优化提供了一个框架,其中系统的动态被编码为对受约束优化问题的解决方案,并且将该较低级别问题的平滑梯度传递给上限轨迹优化器。基于优化的动态表示可实现约束处理,附加变量和非平滑行为,以便远离上层优化器,并允许经典的无约束优化器合成用于更复杂的系统的轨迹。我们提供了一种路径,以便有效地评估受限的动态,并利用隐式功能定理来计算此表示的平滑梯度。我们通过从机器人,航空航天和操纵域建模系统展示了框架,包括:杂志,带有联合限制,卡车杆受到库仑摩擦,Raibert Hopper,火箭落地的推力限制,以及基于优化的动态的平面推送任务然后使用迭代LQR优化轨迹。
translated by 谷歌翻译
通过基于一阶梯度的估计,通过替换零阶梯度估计来替换零阶梯度估计,可以通过估算零阶梯度估计来更快地计算时间。但是,尚不清楚哪些因素决定了两个估计量在复杂景观上的性能,尽管该问题对于可区分的模拟器的实用性至关重要,但涉及长途计划和对物理系统的控制。我们表明,某些物理系统的特征,例如刚度或不连续性,可能会损害一阶估计器的功效,并通过偏置和方差的镜头分析这种现象。我们还提出了一个$ \ alpha $ - 订单梯度估计器,并在[0,1] $中使用$ \ alpha \,它正确利用了精确的梯度将一阶估计值的效率与零级方法的鲁棒性结合在一起。我们在一些数值示例中证明了传统估计器的陷阱以及$ \ alpha $订单估计器的优势。
translated by 谷歌翻译
我们提出了Dojo,这是一种用于机器人技术的可区分物理引擎,优先考虑稳定的模拟,准确的接触物理学以及相对于状态,动作和系统参数的可不同性。Dojo在低样本速率下实现稳定的模拟,并通过使用变异积分器来节省能量和动量。非线性互补性问题,具有用于摩擦的二阶锥体,模型硬接触,并使用自定义的Primal Dual内部点法可靠地解决。使用隐式功能定理利用内点方法的特殊属性,以有效计算通过接触事件提供有用信息的光滑梯度。我们展示了Dojo独特的模拟紧密接触能力,同时提供了许多示例,包括轨迹优化,强化学习和系统识别。
translated by 谷歌翻译
本文涉及从由此产生的刻薄的单个图像重建折射物体形状的高度挑战性问题。由于日常生活中透明折射物体的难以达到透明折射物体,其形状的重建需要多种实际应用。最近从焦散(SFC)方法的形状作为用于合成苛性图像的光传播仿真的问题,这可以通过可微分的渲染器来解决。然而,通过折射表面的光传输的固有复杂性当前限制了相对于重建速度和鲁棒性的实用性。为了解决这些问题,我们从焦散(N-SFC)引入神经形状,这是一种基于学习的扩展,将两个组件包含在重建管道中:一个去噪模块,该模块减轻了光传输模拟的计算成本和优化基于学习梯度下降的过程,它可以使用较少的迭代来更好地收敛。广泛的实验证明了我们的神经扩展在3D玻璃印刷中质量控制的情况下的有效性,在那里我们在计算速度和最终表面误差方面显着优于当前最先进的。
translated by 谷歌翻译
深度学习的兴起导致机器人研究中的范式转变,有利于需要大量数据的方法。在物理平台上生成这样的数据集是昂贵的。因此,最先进的方法在模拟中学习,其中数据生成快速以及廉价并随后将知识转移到真实机器人(SIM-to-Real)。尽管变得越来越真实,但所有模拟器都是基于模型的施工,因此不可避免地不完善。这提出了如何修改模拟器以促进学习机器人控制政策的问题,并克服模拟与现实之间的不匹配,通常称为“现实差距”。我们对机器人学的SIM-Teal研究提供了全面的审查,专注于名为“域随机化”的技术,这是一种从随机仿真学习的方法。
translated by 谷歌翻译
手动相互作用的研究需要为高维多手指模型产生可行的掌握姿势,这通常依赖于分析抓取的合成,从而产生脆弱且不自然的结果。本文介绍了Grasp'd,这是一种与已知模型和视觉输入的可区分接触模拟的掌握方法。我们使用基于梯度的方法作为基于采样的GRASP合成的替代方法,该方法在没有简化假设的情况下失败,例如预先指定的接触位置和本本特征。这样的假设限制了掌握发现,尤其是排除了高接触功率掌握。相比之下,我们基于模拟的方法允许即使对于具有高度自由度的抓地力形态,也可以稳定,高效,物理逼真,高接触抓紧合成。我们确定并解决了对基于梯度的优化进行掌握模拟的挑战,例如非平滑对象表面几何形状,接触稀疏性和坚固的优化景观。 GRASP-D与人类和机器人手模型的分析掌握合成相比,并且结果抓紧超过4倍,超过4倍,从而导致较高的GRASP稳定性。视频和代码可在https://graspd-eccv22.github.io/上获得。
translated by 谷歌翻译
可分辨率的编程技术在社区中广泛应用,负责过去几十年的机器学习文艺复兴。虽然这些方法是强大的,但它们有限制。在本简短的报告中,我们讨论了一种基于混乱的失效模式,这些失效模式出现在各种可分子的情况下,从经常性神经网络和数值物理模拟到培训学习优化器。我们追溯到正在研究的系统的雅各比亚的频谱,并为从业者可能预期这种未能破坏基于分化的优化算法的标准提供标准。
translated by 谷歌翻译
神经辐射场(NERF)最近被成为自然,复杂3D场景的代表的强大范例。 NERFS表示神经网络中的连续体积密度和RGB值,并通过射线跟踪从看不见的相机观点生成照片逼真图像。我们提出了一种算法,用于通过仅使用用于本地化的板载RGB相机表示为NERF的3D环境导航机器人。我们假设现场的NERF已经预先训练了离线,机器人的目标是通过NERF中的未占用空间导航到目标姿势。我们介绍了一种轨迹优化算法,其避免了基于NERF中的高密度区域的碰撞,其基于差分平整度的离散时间版本,其可用于约束机器人的完整姿势和控制输入。我们还介绍了基于优化的过滤方法,以估计单位的RGB相机中的NERF中机器人的6dof姿势和速度。我们将轨迹策划器与在线重新循环中的姿势过滤器相结合,以提供基于视觉的机器人导航管道。我们使用丛林健身房环境,教堂内部和巨石阵线导航的四轮车机器人,使用RGB相机展示仿真结果。我们还展示了通过教会导航的全向地面机器人,要求它重新定位以缩小差距。这项工作的视频可以在https://mikh3x4.github.io/nerf-navigation/找到。
translated by 谷歌翻译
我们旨在教机器人通过观看单个视频演示来执行简单的对象操纵任务。为了实现这一目标,我们提出了一种优化方法,该方法输出了一个粗糙且在时间上不断发展的3D场景,以模仿输入视频中所示的动作。与以前的工作相似,可区分的渲染器可确保3D场景和2D视频之间的感知忠诚度。我们的关键新颖性在于包含一种可区分方法来求解一组普通微分方程(ODE),该方程使我们能够近似建模物理定律,例如重力,摩擦,手动对象或对象对象相互作用。这不仅使我们能够显着提高估计的手和物体状态的质量,而且还可以产生可接受的轨迹,这些轨迹可以直接转化为机器人,而无需进行昂贵的强化学习。我们在3D重建任务上评估了我们的方法,该任务由54个视频演示组成,这些视频演示来自9个动作,例如将某物从右到左拉或将某物放在某物前。我们的方法将以前的最先进的方法提高了近30%,在涉及两个物体(例如将某物)的物理互动的特别挑战性的动作上表现出了卓越的质量。最后,我们在Franka Emika Panda机器人上展示了博学的技能。
translated by 谷歌翻译
能够重现从光相互作用到接触力学的物理现象,模拟器在越来越多的应用程序域变得越来越有用,而现实世界中的相互作用或标记数据很难获得。尽管最近取得了进展,但仍需要大量的人为努力来配置模拟器以准确地再现现实世界的行为。我们介绍了一条管道,将反向渲染与可区分的模拟相结合,从而从深度或RGB视频中创建数字双铰接式机制。我们的方法自动发现关节类型并估算其运动学参数,而整体机制的动态特性则调整为实现物理准确的模拟。正如我们在模拟系统上所证明的那样,在我们的派生模拟传输中优化的控制策略成功地回到了原始系统。此外,我们的方法准确地重建了由机器人操纵的铰接机制的运动学树,以及现实世界中耦合的摆机制的高度非线性动力学。网站:https://Eric-heiden.github.io/video2sim
translated by 谷歌翻译