In this paper, we present a simple yet effective method (ABSGD) for addressing the data imbalance issue in deep learning. Our method is a simple modification to momentum SGD where we leverage an attentional mechanism to assign an individual importance weight to each gradient in the mini-batch. Unlike many existing heuristic-driven methods for tackling data imbalance, our method is grounded in {\it theoretically justified distributionally robust optimization (DRO)}, which is guaranteed to converge to a stationary point of an information-regularized DRO problem. The individual-level weight of a sampled data is systematically proportional to the exponential of a scaled loss value of the data, where the scaling factor is interpreted as the regularization parameter in the framework of information-regularized DRO. Compared with existing class-level weighting schemes, our method can capture the diversity between individual examples within each class. Compared with existing individual-level weighting methods using meta-learning that require three backward propagations for computing mini-batch stochastic gradients, our method is more efficient with only one backward propagation at each iteration as in standard deep learning methods. To balance between the learning of feature extraction layers and the learning of the classifier layer, we employ a two-stage method that uses SGD for pretraining followed by ABSGD for learning a robust classifier and finetuning lower layers. Our empirical studies on several benchmark datasets demonstrate the effectiveness of the proposed method.
translated by 谷歌翻译
在本文中,我们提出了一种实用的在线方法,用于解决具有非凸面目标的一类分布稳健优化(DRO),这在机器学习中具有重要应用,以改善神经网络的稳健性。在文献中,大多数用于解决DRO的方法都基于随机原始方法。然而,DRO的原始方法患有几个缺点:(1)操纵对应于数据尺寸的高维双变量是昂贵的; (2)他们对网上学习不友好,其中数据顺序地发表。为了解决这些问题,我们考虑一类具有KL发散正则化的Dual变量的DRO,将MIN-MAX问题转换为组成最小化问题,并提出了无需较大的批量批量的无需线在线随机方法。我们建立了所提出的方法的最先进的复杂性,而无需多达\ L Ojasiewicz(PL)条件。大规模深度学习任务(i)的实证研究表明,我们的方法可以将培训加速超过2次,而不是基线方法,并在带有$ \ SIM $ 265K图像的大型数据集上节省培训时间。 (ii)验证DRO对实证数据集上的经验风险最小化(ERM)的最高表现。独立兴趣,所提出的方法也可用于解决与最先进的复杂性的随机成分问题家族。
translated by 谷歌翻译
深度神经网络的成功在很大程度上取决于大量高质量注释的数据的可用性,但是这些数据很难或昂贵。由此产生的标签可能是类别不平衡,嘈杂或人类偏见。从不完美注释的数据集中学习无偏分类模型是一项挑战,我们通常会遭受过度拟合或不足的折磨。在这项工作中,我们彻底研究了流行的软马克斯损失和基于保证金的损失,并提供了一种可行的方法来加强通过最大化最小样本余量来限制的概括误差。我们为此目的进一步得出了最佳条件,该条件指示了类原型应锚定的方式。通过理论分析的激励,我们提出了一种简单但有效的方法,即原型锚定学习(PAL),可以轻松地将其纳入各种基于学习的分类方案中以处理不完美的注释。我们通过对合成和现实世界数据集进行广泛的实验来验证PAL对班级不平衡学习和降低噪声学习的有效性。
translated by 谷歌翻译
Deep learning algorithms can fare poorly when the training dataset suffers from heavy class-imbalance but the testing criterion requires good generalization on less frequent classes. We design two novel methods to improve performance in such scenarios. First, we propose a theoretically-principled label-distribution-aware margin (LDAM) loss motivated by minimizing a margin-based generalization bound. This loss replaces the standard cross-entropy objective during training and can be applied with prior strategies for training with class-imbalance such as re-weighting or re-sampling. Second, we propose a simple, yet effective, training schedule that defers re-weighting until after the initial stage, allowing the model to learn an initial representation while avoiding some of the complications associated with re-weighting or re-sampling. We test our methods on several benchmark vision tasks including the real-world imbalanced dataset iNaturalist 2018. Our experiments show that either of these methods alone can already improve over existing techniques and their combination achieves even better performance gains 1 .
translated by 谷歌翻译
Current deep neural networks (DNNs) can easily overfit to biased training data with corrupted labels or class imbalance. Sample re-weighting strategy is commonly used to alleviate this issue by designing a weighting function mapping from training loss to sample weight, and then iterating between weight recalculating and classifier updating. Current approaches, however, need manually pre-specify the weighting function as well as its additional hyper-parameters. It makes them fairly hard to be generally applied in practice due to the significant variation of proper weighting schemes relying on the investigated problem and training data. To address this issue, we propose a method capable of adaptively learning an explicit weighting function directly from data. The weighting function is an MLP with one hidden layer, constituting a universal approximator to almost any continuous functions, making the method able to fit a wide range of weighting functions including those assumed in conventional research. Guided by a small amount of unbiased meta-data, the parameters of the weighting function can be finely updated simultaneously with the learning process of the classifiers. Synthetic and real experiments substantiate the capability of our method for achieving proper weighting functions in class imbalance and noisy label cases, fully complying with the common settings in traditional methods, and more complicated scenarios beyond conventional cases. This naturally leads to its better accuracy than other state-of-the-art methods. Source code is available at https://github.com/xjtushujun/meta-weight-net. * Corresponding author. 1 We call the training data biased when they are generated from a joint sample-label distribution deviating from the distribution of evaluation/test set [1].
translated by 谷歌翻译
ROC(AUROC)和精密召回曲线(AUPRC)的区域是用于评估不平衡问题的分类性能的常见度量。与AUROC相比,AUPRC是一个更合适的度量,用于高度不平衡的数据集。虽然已经广泛研究了Auroc的随机优化,但Auprc的原则随机优化已经很少被探索。在这项工作中,我们提出了一个原则的技术方法来优化Auprc进行深度学习。我们的方法是基于最大化平均精度(AP),这是Auprc的一个非偏见点估计器。我们将目标分为{\ IT依赖的组成函数}的总和,内部函数取决于外层的随机变量。通过利用随机成分优化的最新进展,我们提出了具有{\ IT可提供的收敛保证的皂的适应性和非自适应随机算法。图像和图表数据集的广泛实验结果表明,我们所提出的方法在AUPRC方面占据了对不平衡问题的现有方法。据我们所知,我们的工作代表了第一次尝试使用可提供的融合优化AUPRC。 SOAP已在Libauc库中在〜\ URL {https://libauc.org/}中实现。
translated by 谷歌翻译
在本文中,我们提出了适用于深度学习的单向和双向部分AUC(PAUC)最大化的系统和高效的基于梯度的方法。我们通过使用分布强大的优化(DRO)来定义每个单独的积极数据的损失,提出了PAUC替代目标的新公式。我们考虑了两种DRO的配方,其中一种是基于条件 - 价值风险(CVAR),该风险(CVAR)得出了PAUC的非平滑但精确的估计器,而另一个基于KL差异正则DRO产生不确定的dro。但是PAUC的平滑(软)估计器。对于单向和双向PAUC最大化,我们提出了两种算法,并证明了它们分别优化其两种配方的收敛性。实验证明了所提出的算法对PAUC最大化的有效性,以对各种数据集进行深度学习。
translated by 谷歌翻译
不平衡的数据对基于深度学习的分类模型构成挑战。解决不平衡数据的最广泛使用的方法之一是重新加权,其中训练样本与损失功能的不同权重相关。大多数现有的重新加权方法都将示例权重视为可学习的参数,并优化了元集中的权重,因此需要昂贵的双重优化。在本文中,我们从分布的角度提出了一种基于最佳运输(OT)的新型重新加权方法。具体而言,我们将训练集视为其样品上的不平衡分布,该分布由OT运输到从元集中获得的平衡分布。训练样品的权重是分布不平衡的概率质量,并通过最大程度地减少两个分布之间的ot距离来学习。与现有方法相比,我们提出的一种方法可以脱离每次迭代时的体重学习对相关分类器的依赖性。图像,文本和点云数据集的实验表明,我们提出的重新加权方法具有出色的性能,在许多情况下实现了最新的结果,并提供了一种有希望的工具来解决不平衡的分类问题。
translated by 谷歌翻译
当训练数据集患有极端阶级失衡时,深度神经网络通常会表现不佳。最近的研究发现,以半监督的方式直接使用分布外数据(即开放式样本)培训将损害概括性能。在这项工作中,我们从理论上表明,从贝叶斯的角度来看,仍然可以利用分发数据来扩大少数群体。基于这种动机,我们提出了一种称为开放采样的新方法,该方法利用开放式嘈杂标签重新平衡培训数据集的班级先验。对于每个开放式实例,标签是​​从我们的预定义分布中取样的,该分布互补,与原始类先验的分布互补。我们从经验上表明,开放采样不仅可以重新平衡阶级先验,还鼓励神经网络学习可分离的表示。广泛的实验表明,我们提出的方法显着优于现有数据重新平衡方法,并可以提高现有最新方法的性能。
translated by 谷歌翻译
在本文中,我们研究了多块最小双重双层优化问题,其中上层是非凸线的最小值最小值目标,而下层级别是一个强烈的凸目标,并且有多个双重变量块和下层级别。问题。由于交织在一起的多块最小双重双重结构,每次迭代处的计算成本可能高高,尤其是在大量块中。为了应对这一挑战,我们提出了一种单循环随机随机算法,该算法需要在每次迭代时仅恒定数量的块进行更新。在对问题的一些温和假设下,我们建立了$ \ Mathcal {o}(1/\ Epsilon^4)$的样本复杂性,用于查找$ \ epsilon $ - 稳定点。这匹配了在一般无偏见的随机甲骨文模型下求解随机非convex优化的最佳复杂性。此外,我们在多任务深度AUC(ROC曲线下)最大化和多任务深度部分AUC最大化中提供了两种应用。实验结果验证了我们的理论,并证明了我们方法对数百个任务问题的有效性。
translated by 谷歌翻译
Deep neural networks have been shown to be very powerful modeling tools for many supervised learning tasks involving complex input patterns. However, they can also easily overfit to training set biases and label noises. In addition to various regularizers, example reweighting algorithms are popular solutions to these problems, but they require careful tuning of additional hyperparameters, such as example mining schedules and regularization hyperparameters. In contrast to past reweighting methods, which typically consist of functions of the cost value of each example, in this work we propose a novel meta-learning algorithm that learns to assign weights to training examples based on their gradient directions. To determine the example weights, our method performs a meta gradient descent step on the current mini-batch example weights (which are initialized from zero) to minimize the loss on a clean unbiased validation set. Our proposed method can be easily implemented on any type of deep network, does not require any additional hyperparameter tuning, and achieves impressive performance on class imbalance and corrupted label problems where only a small amount of clean validation data is available.
translated by 谷歌翻译
现代机器学习问题中的不平衡数据集是司空见惯的。具有敏感属性的代表性课程或群体的存在导致关于泛化和公平性的担忧。这种担忧进一步加剧了大容量深网络可以完全适合培训数据,似乎在训练期间达到完美的准确性和公平,但在测试期间表现不佳。为了解决这些挑战,我们提出了自动化,一个自动设计培训损失功能的双层优化框架,以优化准确性和寻求公平目标的混合。具体地,较低级别的问题列举了模型权重,并且上级问题通过监视和优化通过验证数据的期望目标来调谐损耗功能。我们的损耗设计通过采用参数跨熵损失和个性化数据增强方案,可以为类/组进行个性化处理。我们评估我们对不平衡和群体敏感分类的应用方案的方法的好处和性能。广泛的经验评估表明了自动矛盾最先进的方法的益处。我们的实验结果与损耗功能设计的理论见解和培训验证分裂的好处相辅相成。所有代码都是可用的开源。
translated by 谷歌翻译
本文研究了一系列组成函数的随机优化,其中每个汇总的内部函数与相应的求和指数耦合。我们将这个问题家族称为有限和耦合的组成优化(FCCO)。它在机器学习中具有广泛的应用,用于优化非凸或凸组成措施/目标,例如平均精度(AP),p-norm推动,列表排名损失,邻居组成分析(NCA),深度生存分析,深层可变模型等等,这应该得到更精细的分析。然而,现有的算法和分析在一个或其他方面受到限制。本文的贡献是为非凸和凸目标的简单随机算法提供全面的收敛分析。我们的关键结果是通过使用带有微型批次的基于移动平均的估计器,通过并行加速提高了Oracle的复杂性。我们的理论分析还展示了通过对外部和内部水平相等大小的批量来改善实际实现的新见解。关于AP最大化,NCA和P-norm推动的数值实验证实了该理论的某些方面。
translated by 谷歌翻译
尽管对视觉识别任务进行了显着进展,但是当培训数据稀缺或高度不平衡时,深神经网络仍然易于普遍,使他们非常容易受到现实世界的例子。在本文中,我们提出了一种令人惊讶的简单且高效的方法来缓解此限制:使用纯噪声图像作为额外的训练数据。与常见使用添加剂噪声或对抗数据的噪声不同,我们通过直接训练纯无随机噪声图像提出了完全不同的视角。我们提出了一种新的分发感知路由批量归一化层(DAR-BN),除了同一网络内的自然图像之外,还可以在纯噪声图像上训练。这鼓励泛化和抑制过度装备。我们所提出的方法显着提高了不平衡的分类性能,从而获得了最先进的导致大量的长尾图像分类数据集(Cifar-10-LT,CiFar-100-LT,想象齿 - LT,和celeba-5)。此外,我们的方法非常简单且易于使用作为一般的新增强工具(在现有增强的顶部),并且可以在任何训练方案中结合。它不需要任何专门的数据生成或培训程序,从而保持培训快速高效
translated by 谷歌翻译
长尾数据集(Head Class)组成的培训样本比尾巴类别多得多,这会导致识别模型对头等舱有偏见。加权损失是缓解此问题的最受欢迎的方法之一,最近的一项工作表明,班级难度可能比常规使用的类频率更好地决定了权重的分布。在先前的工作中使用了一种启发式公式来量化难度,但是我们从经验上发现,最佳公式取决于数据集的特征。因此,我们提出了困难网络,该难题学习在元学习框架中使用模型的性能来预测类的难度。为了使其在其他班级的背景下学习班级的合理难度,我们新介绍了两个关键概念,即相对难度和驾驶员损失。前者有助于困难网络在计算班级难度时考虑其他课程,而后者对于将学习指向有意义的方向是必不可少的。对流行的长尾数据集进行了广泛的实验证明了该方法的有效性,并且在多个长尾数据集上实现了最先进的性能。
translated by 谷歌翻译
NDCG是标准化的折扣累积增益,是信息检索和机器学习中广泛使用的排名指标。但是,仍然缺乏最大化NDCG的有效且可证明的随机方法,尤其是对于深层模型。在本文中,我们提出了一种优化NDCG及其最高$ K $变体的原则方法。首先,我们制定了一个新颖的组成优化问题,以优化NDCG替代物,以及一个新型的双层构图优化问题,用于优化顶部$ K $ NDCG代理。然后,我们开发有效的随机算法,并为非凸目标提供可证明的收敛保证。与现有的NDCG优化方法不同,我们的算法量表的均量复杂性与迷你批量大小,而不是总项目的数量。为了提高深度学习的有效性,我们通过使用初始热身和停止梯度操作员进一步提出实用策略。多个数据集的实验结果表明,我们的方法在NDCG方面优于先前的排名方法。据我们所知,这是首次提出随机算法以优化具有可证明的收敛保证的NDCG。我们提出的方法在https://libauc.org/的libauc库中实现。
translated by 谷歌翻译
元学习是一种处理不平衡和嘈杂标签学习的有效方法,但它取决于验证集,其中包含随机选择,手动标记和平衡的分布式样品。该验证集的随机选择和手动标记和平衡不仅是元学习的最佳选择,而且随着类的数量,它的缩放范围也很差。因此,最近的元学习论文提出了临时启发式方法来自动构建和标记此验证集,但是这些启发式方法仍然是元学习的最佳选择。在本文中,我们分析了元学习算法,并提出了新的标准来表征验证集的实用性,基于:1)验证集的信息性; 2)集合的班级分配余额; 3)集合标签的正确性。此外,我们提出了一种新的不平衡的嘈杂标签元学习(INOLML)算法,该算法会自动构建通过上面的标准最大化其实用程序来构建验证。我们的方法比以前的元学习方法显示出显着改进,并在几个基准上设定了新的最新技术。
translated by 谷歌翻译
Real-world datasets exhibit imbalances of varying types and degrees. Several techniques based on re-weighting and margin adjustment of loss are often used to enhance the performance of neural networks, particularly on minority classes. In this work, we analyze the class-imbalanced learning problem by examining the loss landscape of neural networks trained with re-weighting and margin-based techniques. Specifically, we examine the spectral density of Hessian of class-wise loss, through which we observe that the network weights converge to a saddle point in the loss landscapes of minority classes. Following this observation, we also find that optimization methods designed to escape from saddle points can be effectively used to improve generalization on minority classes. We further theoretically and empirically demonstrate that Sharpness-Aware Minimization (SAM), a recent technique that encourages convergence to a flat minima, can be effectively used to escape saddle points for minority classes. Using SAM results in a 6.2\% increase in accuracy on the minority classes over the state-of-the-art Vector Scaling Loss, leading to an overall average increase of 4\% across imbalanced datasets. The code is available at: https://github.com/val-iisc/Saddle-LongTail.
translated by 谷歌翻译
基于深度学习的分类中特征表示的主要挑战之一是设计表现出强大歧视力的适当损失功能。经典的SoftMax损失并不能明确鼓励对特征的歧视性学习。研究的一个流行方向是将边缘纳入良好的损失中,以实施额外的课内紧凑性和阶层间的可分离性,但是,这是通过启发式手段而不是严格的数学原则来开发的。在这项工作中,我们试图通过将原则优化目标提出为最大的利润率来解决这一限制。具体而言,我们首先将类别的边缘定义为级别间的可分离性的度量,而样品边缘是级别的紧凑性的度量。因此,为了鼓励特征的歧视性表示,损失函数应促进类和样品的最大可能边缘。此外,我们得出了广义的保证金软损失,以得出现有基于边缘的损失的一般结论。这个原则性的框架不仅提供了新的观点来理解和解释现有的基于保证金的损失,而且还提供了新的见解,可以指导新工具的设计,包括样本保证金正则化和最大的平衡案例的最大保证金损失,和零中心的正则化案例。实验结果证明了我们的策略对各种任务的有效性,包括视觉分类,分类不平衡,重新识别和面部验证。
translated by 谷歌翻译
标签 - 不平衡和组敏感分类中的目标是优化相关的指标,例如平衡错误和相同的机会。经典方法,例如加权交叉熵,在训练深网络到训练(TPT)的终端阶段时,这是超越零训练误差的训练。这种观察发生了最近在促进少数群体更大边值的直观机制之后开发启发式替代品的动力。与之前的启发式相比,我们遵循原则性分析,说明不同的损失调整如何影响边距。首先,我们证明,对于在TPT中训练的所有线性分类器,有必要引入乘法,而不是添加性的Logit调整,以便对杂项边缘进行适当的变化。为了表明这一点,我们发现将乘法CE修改的连接到成本敏感的支持向量机。也许是违反,我们还发现,在培训开始时,相同的乘法权重实际上可以损害少数群体。因此,虽然在TPT中,添加剂调整无效,但我们表明它们可以通过对乘法重量的初始负效应进行抗衡来加速会聚。通过这些发现的动机,我们制定了矢量缩放(VS)丢失,即捕获现有技术作为特殊情况。此外,我们引入了对群体敏感分类的VS损失的自然延伸,从而以统一的方式处理两种常见类型的不平衡(标签/组)。重要的是,我们对最先进的数据集的实验与我们的理论见解完全一致,并确认了我们算法的卓越性能。最后,对于不平衡的高斯 - 混合数据,我们执行泛化分析,揭示平衡/标准错误和相同机会之间的权衡。
translated by 谷歌翻译