Graph Neural Networks (GNNs) as deep learning models working on graph-structure data have achieved advanced performance in many works. However, it has been proved repeatedly that, not all edges in a graph are necessary for the training of machine learning models. In other words, some of the connections between nodes may bring redundant or even misleading information to downstream tasks. In this paper, we try to provide a method to drop edges in order to purify the graph data from a new perspective. Specifically, it is a framework to purify graphs with the least loss of information, under which the core problems are how to better evaluate the edges and how to delete the relatively redundant edges with the least loss of information. To address the above two problems, we propose several measurements for the evaluation and different judges and filters for the edge deletion. We also introduce a residual-iteration strategy and a surrogate model for measurements requiring unknown information. The experimental results show that our proposed measurements for KL divergence with constraints to maintain the connectivity of the graph and delete edges in an iterative way can find out the most edges while keeping the performance of GNNs. What's more, further experiments show that this method also achieves the best defense performance against adversarial attacks.
translated by 谷歌翻译
最近的研究证明,图形神经网络容易受到对抗性攻击的影响。攻击者可以仅依靠培训标签来破坏Edge扰动不可知论受害者模型的性能。研究人员观察到,基于显着性的攻击者倾向于添加边缘而不是删除它们,这是通过以下事实来解释的:添加边缘通过聚集来污染节点的特征,同时删除边缘只会导致一些信息丢失。在本文中,我们进一步证明了攻击者通过添加类间边缘来扰动图,这也表现为降低扰动图的同层。从这个角度来看,基于显着的攻击者仍然有提高能力和不可识别的空间。基于GNN的替代模型的消息传递导致通过类间边缘连接的节点的过度厚度,从而阻止了攻击者获得节点特征的独特性。为了解决此问题,我们引入了一个多跳的汇总消息传递,以保留节点之间的属性差异。此外,我们提出了一个正规化术语来限制同质方差,以增强攻击不可识别。实验验证我们提出的替代模型改善了攻击者的多功能性,正则化项有助于限制扰动图的同质性。
translated by 谷歌翻译
从消息传递机制中受益,图形神经网络(GNN)在图形数据上的繁荣任务上已经成功。但是,最近的研究表明,攻击者可以通过恶意修改图形结构来灾难性地降低GNN的性能。解决此问题的直接解决方案是通过在两个末端节点的成对表示之间学习度量函数来建模边缘权重,该指标函数试图将低权重分配给对抗边缘。现有方法使用监督GNN学到的原始功能或表示形式来对边缘重量进行建模。但是,两种策略都面临着一些直接问题:原始特征不能代表节点的各种特性(例如结构信息),而受监督的GNN学到的表示可能会遭受分类器在中毒图上的差异性能。我们需要携带特征信息和尽可能糊状的结构信息并且对结构扰动不敏感的表示形式。为此,我们提出了一条名为stable的无监督管道,以优化图形结构。最后,我们将精心设计的图输入到下游分类器中。对于这一部分,我们设计了一个高级GCN,可显着增强香草GCN的鲁棒性,而不会增加时间复杂性。在四个现实世界图基准上进行的广泛实验表明,稳定的表现优于最先进的方法,并成功防御各种攻击。
translated by 谷歌翻译
对图形的对抗攻击对图形机器学习(GML)模型的鲁棒性构成了重大威胁。当然,攻击者和捍卫者之间存在一场易于升级的军备竞赛。但是,在相同和现实的条件下,双方背后的策略往往不相当。为了弥合这一差距,我们展示了Graph稳健性基准(GRB),其目的是为GML模型的对抗鲁棒性提供可扩展,统一,模块化和可重复的评估。 GRB将攻击和防御过程标准化1)开发可扩展和多样化的数据集,2)模块化攻击和防御实现,以及统一精细方案中的评估协议。通过利用GRB管道,最终用户可以专注于具有自动数据处理和实验评估的强大GML模型的开发。为了支持对图形对抗性学习的开放和可重复研究,GRB还遍布不同方案的公共排行榜。作为起点,我们对基准基线技术进行了广泛的实验。 GRB是开放的,欢迎社区的贡献。数据集,代码,排行榜可在https://cogdl.ai/grb/home获得。
translated by 谷歌翻译
图神经网络(GNN)正在在各种应用领域中实现出色的性能。但是,GNN容易受到输入数据中的噪声和对抗性攻击。在噪音和对抗性攻击方面使GNN坚固是一个重要的问题。现有的GNN防御方法在计算上是要求的,并且不可扩展。在本文中,我们提出了一个通用框架,用于鲁棒化的GNN称为加权laplacian GNN(RWL-GNN)。该方法将加权图拉普拉斯学习与GNN实现结合在一起。所提出的方法受益于Laplacian矩阵的积极半定义特性,具有光滑度和潜在特征,通过制定统一的优化框架,从而确保丢弃对抗性/嘈杂的边缘,并适当加权图中的相关连接。为了进行演示,实验是通过图形卷积神经网络(GCNN)体系结构进行的,但是,所提出的框架很容易适合任何现有的GNN体系结构。使用基准数据集的仿真结果建立了所提出方法的疗效,无论是准确性还是计算效率。可以在https://github.com/bharat-runwal/rwl-gnn上访问代码。
translated by 谷歌翻译
图形神经网络(GNNS)在建模图形结构数据方面表明了它们的能力。但是,实际图形通常包含结构噪声并具有有限的标记节点。当在这些图表中培训时,GNN的性能会显着下降,这阻碍了许多应用程序的GNN。因此,与有限标记的节点开发抗噪声GNN是重要的。但是,这是一个相当有限的工作。因此,我们研究了在具有有限标记节点的嘈杂图中开发鲁棒GNN的新问题。我们的分析表明,嘈杂的边缘和有限的标记节点都可能损害GNN的消息传递机制。为减轻这些问题,我们提出了一种新颖的框架,该框架采用嘈杂的边缘作为监督,以学习去噪和密集的图形,这可以减轻或消除嘈杂的边缘,并促进GNN的消息传递,以缓解有限标记节点的问题。生成的边缘还用于规则地将具有标记平滑度的未标记节点的预测规范化,以更好地列车GNN。实验结果对现实世界数据集展示了在具有有限标记节点的嘈杂图中提出框架的稳健性。
translated by 谷歌翻译
图形注意力网络(GAT)是处理图数据的有用深度学习模型。但是,最近的作品表明,经典的GAT容易受到对抗攻击的影响。它在轻微的扰动下急剧降低。因此,如何增强GAT的鲁棒性是一个关键问题。本文提出了强大的GAT(Rogat),以根据注意机制的修订来改善GAT的鲁棒性。与原始的GAT不同,该GAT使用注意力机制的不同边缘,但仍然对扰动敏感,Rogat逐渐增加了动态注意力评分并提高了稳健性。首先,Rogat根据平滑度假设修改边缘的重量,这对于普通图很常见。其次,Rogat进一步修改了功能以抑制功能的噪声。然后,由动态边缘的重量产生额外的注意力评分,可用于减少对抗性攻击的影响。针对引文数据的引文数据的针对目标和不靶向攻击的不同实验表明,Rogat的表现优于最近的大多数防御方法。
translated by 谷歌翻译
图形神经网络(GNNS)在各种现实世界应用中取得了有希望的性能。然而,最近的研究表明,GNN易受对抗性发作的影响。在本文中,我们研究了关于图表 - 图 - 图注射攻击(GIA)的最近引入的现实攻击情景。在GIA场景中,对手无法修改输入图的现有链路结构和节点属性,而是通过将逆势节点注入到它中来执行攻击。我们对GIA环境下GNN的拓扑脆弱性分析,基于该拓扑结构,我们提出了用于有效注射攻击的拓扑缺陷图注射攻击(TDGIA)。 TDGIA首先介绍了拓扑有缺陷的边缘选择策略,可以选择与注入的原始节点连接。然后,它设计平滑功能优化目标,以生成注入节点的功能。大规模数据集的广泛实验表明,TDGIA可以一致而明显优于攻击数十个防御GNN模型中的各种攻击基线。值得注意的是,来自TDGIA的目标GNNS上的性能下降比KDD-CUP 2020上的数百个提交所带来的最佳攻击解决方案所带来的损坏多于两倍。
translated by 谷歌翻译
图形卷积网络(GCN)已显示出容易受到小型对抗扰动的影响,这成为严重的威胁,并在很大程度上限制了其在关键安全场景中的应用。为了减轻这种威胁,大量的研究工作已致力于增加GCN对对抗攻击的鲁棒性。但是,当前的防御方法通常是为整个图表而设计的,并考虑了全球性能,在保护重要的本地节点免受更强的对抗性靶向攻击方面面临着挑战。在这项工作中,我们提出了一种简单而有效的方法,名为Graph Universal对抗防御(Guard)。与以前的作品不同,Guard可以保护每个单独的节点免受通用防御贴片的攻击,该节点是一次生成的,可以应用于图中的任何节点(节点-Agnostic)。在四个基准数据集上进行的广泛实验表明,我们的方法可显着提高几种已建立的GCN的鲁棒性,以针对多种对抗性攻击,并且胜过大幅度的最先进的防御方法。我们的代码可在https://github.com/edisonleeeeee/guard上公开获取。
translated by 谷歌翻译
节点注入对图神经网络(GNN)的攻击已作为一种实际的攻击场景而引起了人们的注意,攻击者会注入恶意节点,而不是修改节点功能或边缘以降低GNN的性能。尽管节点注射攻击最初取得了成功,但我们发现,通过防御方法,可以通过防御方法和限制其在实践中限制其攻击性能,从而很容易将注射的节点与原始正常节点区分开。为了解决上述问题,我们致力于伪装节点注入攻击,即伪装注入恶意节点(结构/属性)是对防御方法似乎合理/不察觉的普通淋巴结。图形数据的非欧亚人性质和缺乏人类的先验性质给伪装上伪装的形式化,实施和评估带来了巨大挑战。在本文中,我们首先提出并制定了从注射节点围绕的自我网络的忠诚度和多样性中注入的节点的伪装。然后,我们为节点注射攻击(即Cana)设计了一个对抗性伪装框架,以改善伪装,同时确保攻击性能。进一步设计了几种用于图形伪装的新型指标,以进行全面的评估。实验结果表明,当将现有的节点注入攻击方法与我们提出的CANA框架配置时,针对防御方法的攻击性能以及节点伪装将显着改善。
translated by 谷歌翻译
我们通过形式化节点标签的异质性(即连接的节点倾向于具有不同的标签)和GNN与对抗性攻击的稳健性来弥合图形神经网络(GNN)的两个研究方向。我们的理论和经验分析表明,对于同质图数据,有影响力的结构攻击始终导致同质性降低,而对于异性图数据,同质级别的变化取决于节点度。这些见解对防御对现实图形的攻击具有实际含义:我们推断出分离自我和邻居限制的汇总器,这是一种已确定的设计原则,可以显着改善异性图数据的预测,还可以为增强的鲁棒性提供稳健性gnns。我们的综合实验表明,与表现最好的未接种模型相比,GNN仅采用这种设计可以提高经验和可证明的鲁棒性。此外,与表现最佳的疫苗接种模型相比,这种设计与对抗性攻击的明确防御机制相结合,可提高稳健性,攻击性能在攻击下提高18.33%。
translated by 谷歌翻译
图边缘扰动致力于通过修改图形结构来损害图神经网络的预测。以前的灰色框攻击者采用替代模型的梯度来定位脆弱的边缘以扰动图形结构。但是,图形结构上的梯度存在不可靠性,这是先前工作很少研究的。在本文中,我们讨论并分析了由结构梯度的不可靠性引起的错误。这些误差是由于图形结构的离散性以及图形结构上元梯度的不可靠性引起的粗糙梯度使用。为了解决这些问题,我们提出了一种新的攻击模型,该模型采用减少结构梯度内部错误的方法。我们提出Edge离散抽样以选择与分层候选选择相关的边缘扰动,以确保计算效率。此外,提出了语义不变性和动量梯度集合,以解决语义增强图上的梯度波动以及替代模型的不稳定性。实验是在未靶向的灰色盒中毒场景中进行的,并证明了我们方法的性能的改善。
translated by 谷歌翻译
图形神经网络(GNNS)在许多图形挖掘任务中取得了巨大的成功,这些任务从消息传递策略中受益,该策略融合了局部结构和节点特征,从而为更好的图表表示学习。尽管GNN成功,并且与其他类型的深神经网络相似,但发现GNN容易受到图形结构和节点特征的不明显扰动。已经提出了许多对抗性攻击,以披露在不同的扰动策略下创建对抗性例子的GNN的脆弱性。但是,GNNS对成功后门攻击的脆弱性直到最近才显示。在本文中,我们披露了陷阱攻击,这是可转移的图形后门攻击。核心攻击原则是用基于扰动的触发器毒化训练数据集,这可以导致有效且可转移的后门攻击。图形的扰动触发是通过通过替代模型的基于梯度的得分矩阵在图形结构上执行扰动动作来生成的。与先前的作品相比,陷阱攻击在几种方面有所不同:i)利用替代图卷积网络(GCN)模型来生成基于黑盒的后门攻击的扰动触发器; ii)它产生了没有固定模式的样品特异性扰动触发器; iii)在使用锻造中毒训练数据集训练时,在GNN的背景下,攻击转移到了不同​​的GNN模型中。通过对四个现实世界数据集进行广泛的评估,我们证明了陷阱攻击使用四个现实世界数据集在四个不同流行的GNN中构建可转移的后门的有效性
translated by 谷歌翻译
鉴于他们的普及和应用程序的多样性,图形神经网络(GNNS)越来越重要。然而,对对抗性袭击的脆弱性的现有研究依赖于相对较小的图形。我们解决了这个差距并研究了如何在规模攻击和捍卫GNN。我们提出了两个稀疏感知的一阶优化攻击,尽管优化了在节点数量中的许多参数上优化了有效的表示。我们表明,普通的替代损失并不适合全球对GNN的攻击。我们的替代品可以加倍攻击力量。此外,为了提高GNNS的可靠性,我们设计了强大的聚合函数,软中位,导致所有尺度的有效防御。我们评估了我们的攻击和防御与图形的标准GNN,与以前的工作相比大于100倍以上。我们甚至通过将技术扩展到可伸缩的GNN来进一步缩放一个数量级。
translated by 谷歌翻译
我们为旨在降低公平性的对抗神经网络(GNN)的对抗性攻击(GNN)的存在和有效性提供了证据。这些攻击可能不利基于GNN的节点分类中的特定节点子组,其中基础网络的节点具有敏感的属性,例如种族或性别。我们进行了定性和实验分析,以解释对抗链接注射如何损害GNN预测的公平性。例如,攻击者可以通过在属于相反子组和相反类标签的节点之间注入对抗性链接来损害基于GNN的节点分类的公平性。我们在经验数据集上的实验表明,对抗公平性攻击可以显着降低GNN预测的公平性(攻击是有效的),其扰动率较低(攻击是有效的),并且没有明显的准确性下降(攻击是欺骗性的)。这项工作证明了GNN模型对对抗公平性攻击的脆弱性。我们希望我们的发现在社区中提高人们对这个问题的认识,并为GNN模型的未来发展奠定了基础,这些模型对这种攻击更为强大。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have been widely applied to different tasks such as bioinformatics, drug design, and social networks. However, recent studies have shown that GNNs are vulnerable to adversarial attacks which aim to mislead the node or subgraph classification prediction by adding subtle perturbations. Detecting these attacks is challenging due to the small magnitude of perturbation and the discrete nature of graph data. In this paper, we propose a general adversarial edge detection pipeline EDoG without requiring knowledge of the attack strategies based on graph generation. Specifically, we propose a novel graph generation approach combined with link prediction to detect suspicious adversarial edges. To effectively train the graph generative model, we sample several sub-graphs from the given graph data. We show that since the number of adversarial edges is usually low in practice, with low probability the sampled sub-graphs will contain adversarial edges based on the union bound. In addition, considering the strong attacks which perturb a large number of edges, we propose a set of novel features to perform outlier detection as the preprocessing for our detection. Extensive experimental results on three real-world graph datasets including a private transaction rule dataset from a major company and two types of synthetic graphs with controlled properties show that EDoG can achieve above 0.8 AUC against four state-of-the-art unseen attack strategies without requiring any knowledge about the attack type; and around 0.85 with knowledge of the attack type. EDoG significantly outperforms traditional malicious edge detection baselines. We also show that an adaptive attack with full knowledge of our detection pipeline is difficult to bypass it.
translated by 谷歌翻译
许多真实数据以图形的形式出现。图表神经网络(GNNS)是一个新的机器学习(ML)模型,已建议完全利用图表数据来构建强大的应用程序。特别地,可以概括到看不见的数据的电感GNN成为主流。机器学习模型在各种任务中表现出很大的潜力,并已在许多真实情景中部署。要培训良好的模型,需要大量的数据以及计算资源,从而导致有价值的知识产权。以前的研究表明,ML模型容易窃取攻击模型,旨在窃取目标模型的功能。然而,大多数人都专注于用图像和文本接受培训的模型。另一方面,对于用图表数据,即GNNS接受培训的模型,已经支付了很少的注意。在本文中,我们通过提出针对电感GNN的第一个模型窃取攻击来填补差距。我们系统地定义了威胁模型,并根据对手的背景知识和目标模型的响应提出六次攻击。我们对六个基准数据集的评估显示,拟议的模型窃取针对GNN的攻击实现了有希望的性能。
translated by 谷歌翻译
图表的深度学习模型对节点分类的任务取得了很强的性能。尽管他们扩散,目前没有对对抗性袭击的稳健性的研究。然而,在域中可能被使用,例如,网上,对手很常见。图表的深度学习模型很容易被愚弄吗?在这项工作中,我们介绍了对归属图的对抗性攻击的第一次研究,特别是专注于利用图形卷积思想的模型。除了在考试时间的攻击之外,我们还解决了更具挑战性的中毒/致病攻击,这些攻击专注于机器学习模型的训练阶段。我们生成针对节点特征和图形结构的对抗扰动,从而占用了实例之间的依赖关系。此外,我们确保通过保留重要数据特征来确保扰动仍然是不可抑制的。为了应对基础的离散域,我们提出了一种有效的NetTack利用增量计算的算法。我们的实验研究表明,即使仅在扰动时,节点分类的准确性也显着下降。甚至更多,我们的攻击是可转移的:学习攻击概括到其他最先进的节点分类模型和无监督的方法,同样也是成功的,即使仅给出了关于图形的有限知识时也是成功的。
translated by 谷歌翻译
Predictive coding is a message-passing framework initially developed to model information processing in the brain, and now also topic of research in machine learning due to some interesting properties. One of such properties is the natural ability of generative models to learn robust representations thanks to their peculiar credit assignment rule, that allows neural activities to converge to a solution before updating the synaptic weights. Graph neural networks are also message-passing models, which have recently shown outstanding results in diverse types of tasks in machine learning, providing interdisciplinary state-of-the-art performance on structured data. However, they are vulnerable to imperceptible adversarial attacks, and unfit for out-of-distribution generalization. In this work, we address this by building models that have the same structure of popular graph neural network architectures, but rely on the message-passing rule of predictive coding. Through an extensive set of experiments, we show that the proposed models are (i) comparable to standard ones in terms of performance in both inductive and transductive tasks, (ii) better calibrated, and (iii) robust against multiple kinds of adversarial attacks.
translated by 谷歌翻译
机器学习模型被证明是面对模型提取攻击的严重威胁,其中服务提供商拥有的训练有素的私人模型可以被假装作为客户端的攻击者窃取。不幸的是,先前的作品侧重于欧几里德空间训练的模型,例如图像和文本,而如何提取包含图形结构的GNN模型,则尚未探索节点功能。本文首次全面调查并开发针对GNN模型的模型提取攻击。我们首先通过考虑由攻击者获得的节点的不同背景知识,将对冲威胁分类为七种类别的威胁建模并将对抗性威胁分类为七个类别。然后我们展示了利用每种威胁中的可访问知识来实现​​攻击的详细方法。通过评估三个现实世界数据集,我们的攻击显示有效提取重复模型,即目标域中的84% - 89%的输入具有与受害者模型相同的输出预测。
translated by 谷歌翻译