在过去的几年里,深度神经网络(DNN)取得了巨大的成功,并且在许多应用领域中不断应用。然而,在工业任务的实际部署期间,由于超容易的原因,发现DNN被发现是错误的,缺乏在实际使用过程中对现实世界腐败的鲁棒性。为了解决这些挑战,通过通过在神经级别的再试,微调或直接重量固定来通过更新权重(即,网络参数)来修复实际操作环境下的近期尝试。在这项工作中,作为第一次尝试,我们通过共同优化架构和重量,以更高(即,块)级别来修复DNN。我们首先履行实证研究,以调查整个网络级和层次修复的限制,这激励我们探索块水平的DNN修复的新修复方向。为此,我们首先提出对弱势群体定位的对抗侵犯块定位的频谱分析,其在前向和后向过程中考虑块中的神经元“状态和权重”梯度,这使得即使在几个示例下也能够修复更准确的候选块定位。然后,我们进一步提出了面向架构的基于搜索的修复,该修复将目标块放宽到更高的深度特征级别的连续修复搜索空间。通过联合优化该空间中的架构和权重,我们可以识别更好的块架构。我们实施我们提出的修复技术作为一个名为ArchRepair的工具,并进行广泛的实验以验证提出的方法。结果表明,我们的方法不仅可以修复,还可以提高准确性和稳健性,优于最先进的DNN修复技术。
translated by 谷歌翻译
网络体系结构搜索(NAS),尤其是可区分的体系结构搜索(DARTS)方法,已经显示出在特定感兴趣的特定数据集中学习出色的模型体系结构的强大力量。与使用固定的数据集相反,在这项工作中,我们关注NAS的不同但重要的方案:如何完善部署的网络模型体系结构,以增强其鲁棒性,并通过一些收集和错误分类的示例的指导来增强其鲁棒性,这些示例被某些降低了现实世界中的未知损坏具有特定的模式(例如噪声,模糊等)。为此,我们首先进行了一项实证研究,以验证模型体系结构绝对与腐败模式有关。令人惊讶的是,通过仅添加一些损坏和错误分类的示例(例如,$ 10^3 $示例)到清洁培训数据集(例如$ 5.0 \ times 10^4 $示例)中,我们可以完善模型体系结构并显着增强鲁棒性。为了使其更加实用,应仔细研究关键问题,即如何为有效的NAS指导选择适当的失败示例。然后,我们提出了一个新颖的核心失效指导飞镖,该飞镖嵌入了K-Center-Greedy算法的飞镖,以选择合适的损坏故障示例以完善模型体系结构。我们使用我们的方法在清洁和15个腐败上使用飞镖精制的DNN,并在四个特定的现实世界腐败的指导下进行了指导。与最先进的NAS以及基于数据启发的增强方法相比,我们的最终方法可以在损坏的数据集和原始清洁数据集上获得更高的精度。在某些腐败模式上,我们可以达到超过45%的绝对准确性提高。
translated by 谷歌翻译
深度神经网络(DNNS)的快速和广泛采用呼吁测试其行为的方法,许多测试方法成功地揭示了DNN的不当行为。但是,相对尚不清楚启示录后可以采取什么措施来纠正这种行为,因为重新研究涉及昂贵的数据收集,并且不能保证解决基本问题。本文介绍了Arachne,这是一种针对DNNS的新型程序修复技术,该技术使用其输入输出对直接维修DNN作为规范。 Arachne局部性的神经权重可以生成有效的斑块并使用差分进化来优化局部权重并纠正不当行为。使用不同基准的实证研究表明,Arachne可以固定DNN的特定错误分类,而无需显着降低一般准确性。平均而言,Arachne产生的补丁概括至未见不良行为的61.3%,而通过最先进的DNN修复技术的斑块仅概括为10.2%,有时甚至是没有,而无数次数则超过了Arachne。我们还表明,Arachne可以通过对性别分类模型来解决公平问题。最后,我们成功地将Arachne应用于文本情感模型,以表明它的普遍性超出了卷积神经网络。
translated by 谷歌翻译
在现实世界应用中的深度神经网络(DNN)的成功受益于丰富的预训练模型。然而,回溯预训练模型可以对下游DNN的部署构成显着的特洛伊木马威胁。现有的DNN测试方法主要旨在在对抗性设置中找到错误的角壳行为,但未能发现由强大的木马攻击所制作的后门。观察特洛伊木马网络行为表明,它们不仅由先前的工作所提出的单一受损神经元反射,而且归因于在多个神经元的激活强度和频率中的关键神经路径。这项工作制定了DNN后门测试,并提出了录音机框架。通过少量良性示例的关键神经元的差异模糊,我们识别特洛伊木马路径,特别是临界人,并通过模拟所识别的路径中的关键神经元来产生后门测试示例。广泛的实验表明了追索者的优越性,比现有方法更高的检测性能。通过隐秘的混合和自适应攻击来检测到后门的录音机更好,现有方法无法检测到。此外,我们的实验表明,录音所可能会揭示模型动物园中的模型的潜在潜在的背面。
translated by 谷歌翻译
深度神经网络(DNN)已广泛用于许多领域,包括图像处理,医疗诊断和自主驾驶。然而,DNN可以表现出可能导致严重错误的错误行为,特别是在安全关键系统中使用时。灵感来自传统软件系统的测试技术,研究人员提出了神经元覆盖标准,作为比喻源代码覆盖率,以指导DNN模型的测试。尽管对DNN覆盖范围非常积极的研究,但最近的几项研究质疑此类标准在指导DNN测试中的有用性。此外,从实际的角度来看,这些标准是白盒,因为它们需要访问DNN模型的内部或培训数据,这在许多情况下不可行或方便。在本文中,我们将黑盒输入分集度量调查为白盒覆盖标准的替代品。为此,我们首先以受控方式选择和适应三个分集指标和学习它们在输入集中测量实际分集的能力。然后,我们使用两个数据集和三个DNN模型分析其与故障检测的统计关联。我们进一步比较了与最先进的白盒覆盖标准的多样性。我们的实验表明,依赖于测试输入集中嵌入的图像特征的多样性是比覆盖标准更可靠的指示,以有效地指导DNN的测试。事实上,我们发现我们选定的黑盒子分集度量的一个远远超出了现有的覆盖范围,以便在发生故障泄露能力和计算时间方面。结果还确认了疑似,最先进的覆盖度量指标不足以指导测试输入集的构建,以检测尽可能多的自然输入的故障。
translated by 谷歌翻译
由于其在多个工业应用领域的竞争性能,深度学习在我们的日常生活中起着越来越重要的作用。作为基于DL的系统的核心,深度神经网络会自动从精心收集和有组织的培训数据中学习知识,以获得预测看不见数据的标签的能力。与需要全面测试的传统软件系统类似,还需要仔细评估DNN,以确保受过训练的模型的质量满足需求。实际上,评估行业中DNN质量的事实上的标准是检查其在收集的标记测试数据集中的性能(准确性)。但是,准备这样的标记数据通常不容易部分,部分原因是标签工作巨大,即数据标记是劳动密集型的,尤其是每天有大量新的新传入的未标记数据。最近的研究表明,DNN的测试选择是一个有希望的方向,可以通过选择最小的代表性数据来标记并使用这些数据来评估模型来解决此问题。但是,它仍然需要人类的努力,不能自动。在本文中,我们提出了一种名为Aries的新技术,可以使用原始测试数据获得的信息估算新未标记数据的DNN的性能。我们技术背后的关键见解是,该模型在与决策边界具有相似距离的数据上应具有相似的预测准确性。我们对13种数据转换方法的技术进行了大规模评估。结果表明,我们技术的有用性是,白羊座的估计准确性仅为0.03%-2.60%(平均0.61%),从真实的准确性中差。此外,在大多数(128个)情况下,白羊座还优于最先进的选择标记方法。
translated by 谷歌翻译
量化是在嵌入式系统或手机上部署训练有素的DNN模型时,是最应用的深神经网络(DNN)压缩策略之一。这是由于其对广泛的应用和情况的简单性和适应性,而不是特定的人工智能(AI)加速器和编译器,这些加速器和编译器通常仅用于某些特定的硬件(例如Google Coral Edge TPU)。随着对量化的需求不断增长,确保该策略的可靠性成为一个关键挑战。传统的测试方法收集越来越多的真实数据以进行更好的评估,通常是不切实际的,因为输入空间的尺寸很大,并且原始DNN及其量化的对应物之间的相似性很高。结果,高级评估策略已变得至关重要。在本文中,我们提出了Diverget,这是一个基于搜索的测试框架,用于量化评估。 Diverget定义了变质关系的空间,该空间模拟了输入上的自然扭曲。然后,它最佳地探索了这些关系,以揭示不同算术精度的DNN之间的分歧。我们评估了应用于高光谱遥感图像的最先进的DNN上的Diverget的性能。我们选择了遥感DNN,因为它们越来越多地部署在诸如气候变化研究和天文学之类的关键领域中的边缘(例如,高级无人机)。我们的结果表明,Diverget成功地挑战了已建立的量化技术的鲁棒性,以防止自然变化的数据,并胜过其最新的并发,Diffchaser,其成功率(平均)是四倍。
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
Deep learning (DL) has become a driving force and has been widely adopted in many domains and applications with competitive performance. In practice, to solve the nontrivial and complicated tasks in real-world applications, DL is often not used standalone, but instead contributes as a piece of gadget of a larger complex AI system. Although there comes a fast increasing trend to study the quality issues of deep neural networks (DNNs) at the model level, few studies have been performed to investigate the quality of DNNs at both the unit level and the potential impacts on the system level. More importantly, it also lacks systematic investigation on how to perform the risk assessment for AI systems from unit level to system level. To bridge this gap, this paper initiates an early exploratory study of AI system risk assessment from both the data distribution and uncertainty angles to address these issues. We propose a general framework with an exploratory study for analyzing AI systems. After large-scale (700+ experimental configurations and 5000+ GPU hours) experiments and in-depth investigations, we reached a few key interesting findings that highlight the practical need and opportunities for more in-depth investigations into AI systems.
translated by 谷歌翻译
Deep learning (DL) systems are increasingly deployed in safety-and security-critical domains including self-driving cars and malware detection, where the correctness and predictability of a system's behavior for corner case inputs are of great importance. Existing DL testing depends heavily on manually labeled data and therefore often fails to expose erroneous behaviors for rare inputs.We design, implement, and evaluate DeepXplore, the first whitebox framework for systematically testing real-world DL systems. First, we introduce neuron coverage for systematically measuring the parts of a DL system exercised by test inputs. Next, we leverage multiple DL systems with similar functionality as cross-referencing oracles to avoid manual checking. Finally, we demonstrate how finding inputs for DL systems that both trigger many differential behaviors and achieve high neuron coverage can be represented as a joint optimization problem and solved efficiently using gradientbased search techniques.DeepXplore efficiently finds thousands of incorrect corner case behaviors (e.g., self-driving cars crashing into guard rails and malware masquerading as benign software) in stateof-the-art DL models with thousands of neurons trained on five popular datasets including ImageNet and Udacity selfdriving challenge data. For all tested DL models, on average, DeepXplore generated one test input demonstrating incorrect behavior within one second while running only on a commodity laptop. We further show that the test inputs generated by DeepXplore can also be used to retrain the corresponding DL model to improve the model's accuracy by up to 3%.
translated by 谷歌翻译
Adversarial training (AT) is one of the most effective ways for improving the robustness of deep convolution neural networks (CNNs). Just like common network training, the effectiveness of AT relies on the design of basic network components. In this paper, we conduct an in-depth study on the role of the basic ReLU activation component in AT for robust CNNs. We find that the spatially-shared and input-independent properties of ReLU activation make CNNs less robust to white-box adversarial attacks with either standard or adversarial training. To address this problem, we extend ReLU to a novel Sparta activation function (Spatially attentive and Adversarially Robust Activation), which enables CNNs to achieve both higher robustness, i.e., lower error rate on adversarial examples, and higher accuracy, i.e., lower error rate on clean examples, than the existing state-of-the-art (SOTA) activation functions. We further study the relationship between Sparta and the SOTA activation functions, providing more insights about the advantages of our method. With comprehensive experiments, we also find that the proposed method exhibits superior cross-CNN and cross-dataset transferability. For the former, the adversarially trained Sparta function for one CNN (e.g., ResNet-18) can be fixed and directly used to train another adversarially robust CNN (e.g., ResNet-34). For the latter, the Sparta function trained on one dataset (e.g., CIFAR-10) can be employed to train adversarially robust CNNs on another dataset (e.g., SVHN). In both cases, Sparta leads to CNNs with higher robustness than the vanilla ReLU, verifying the flexibility and versatility of the proposed method.
translated by 谷歌翻译
Deep neural networks (DNNs) are found to be vulnerable to adversarial attacks, and various methods have been proposed for the defense. Among these methods, adversarial training has been drawing increasing attention because of its simplicity and effectiveness. However, the performance of the adversarial training is greatly limited by the architectures of target DNNs, which often makes the resulting DNNs with poor accuracy and unsatisfactory robustness. To address this problem, we propose DSARA to automatically search for the neural architectures that are accurate and robust after adversarial training. In particular, we design a novel cell-based search space specially for adversarial training, which improves the accuracy and the robustness upper bound of the searched architectures by carefully designing the placement of the cells and the proportional relationship of the filter numbers. Then we propose a two-stage search strategy to search for both accurate and robust neural architectures. At the first stage, the architecture parameters are optimized to minimize the adversarial loss, which makes full use of the effectiveness of the adversarial training in enhancing the robustness. At the second stage, the architecture parameters are optimized to minimize both the natural loss and the adversarial loss utilizing the proposed multi-objective adversarial training method, so that the searched neural architectures are both accurate and robust. We evaluate the proposed algorithm under natural data and various adversarial attacks, which reveals the superiority of the proposed method in terms of both accurate and robust architectures. We also conclude that accurate and robust neural architectures tend to deploy very different structures near the input and the output, which has great practical significance on both hand-crafting and automatically designing of accurate and robust neural architectures.
translated by 谷歌翻译
深神经网络(DNNS)在各种机器学习(ML)应用程序中取得了巨大成功,在计算机视觉,自然语言处理和虚拟现实等中提供了高质量的推理解决方案。但是,基于DNN的ML应用程序也带来计算和存储要求的增加了很多,对于具有有限的计算/存储资源,紧张的功率预算和较小形式的嵌入式系统而言,这尤其具有挑战性。挑战还来自各种特定应用的要求,包括实时响应,高通量性能和可靠的推理准确性。为了应对这些挑战,我们介绍了一系列有效的设计方法,包括有效的ML模型设计,定制的硬件加速器设计以及硬件/软件共同设计策略,以启用嵌入式系统上有效的ML应用程序。
translated by 谷歌翻译
用于计算机视觉任务的深度神经网络在越来越安全 - 严重和社会影响的应用中部署,激励需要在各种,天然存在的成像条件下关闭模型性能的差距。在包括对抗机器学习的多种上下文中尤为色难地使用的鲁棒性,然后指在自然诱导的图像损坏或改变下保持模型性能。我们进行系统审查,以识别,分析和总结当前定义以及对计算机愿景深度学习中的非对抗鲁棒性的进展。我们发现,该研究领域已经收到了相对于对抗机器学习的不成比例地注意力,但存在显着的稳健性差距,这些差距通常表现在性能下降中与对抗条件相似。为了在上下文中提供更透明的稳健性定义,我们引入了数据生成过程的结构因果模型,并将非对抗性鲁棒性解释为模型在损坏的图像上的行为,其对应于来自未纳入数据分布的低概率样本。然后,我们确定提高神经网络鲁棒性的关键架构,数据增强和优化策略。这种稳健性的这种因果观察表明,目前文献中的常见做法,关于鲁棒性策略和评估,对应于因果概念,例如软干预导致成像条件的决定性分布。通过我们的调查结果和分析,我们提供了对未来研究如何可能介意这种明显和显着的非对抗的鲁棒性差距的观点。
translated by 谷歌翻译
混合精确的深神经网络达到了硬件部署所需的能源效率和吞吐量,尤其是在资源有限的情况下,而无需牺牲准确性。但是,不容易找到保留精度的最佳每层钻头精度,尤其是在创建巨大搜索空间的大量模型,数据集和量化技术中。为了解决这一困难,最近出现了一系列文献,并且已经提出了一些实现有希望的准确性结果的框架。在本文中,我们首先总结了文献中通常使用的量化技术。然后,我们对混合精液框架进行了彻底的调查,该调查是根据其优化技术进行分类的,例如增强学习和量化技术,例如确定性舍入。此外,讨论了每个框架的优势和缺点,我们在其中呈现并列。我们最终为未来的混合精液框架提供了指南。
translated by 谷歌翻译
最近,已经成功地应用于各种遥感图像(RSI)识别任务的大量基于深度学习的方法。然而,RSI字段中深度学习方法的大多数现有进步严重依赖于手动设计的骨干网络提取的特征,这严重阻碍了由于RSI的复杂性以及先前知识的限制而受到深度学习模型的潜力。在本文中,我们研究了RSI识别任务中的骨干架构的新设计范式,包括场景分类,陆地覆盖分类和对象检测。提出了一种基于权重共享策略和进化算法的一拍架构搜索框架,称为RSBNet,其中包括三个阶段:首先,在层面搜索空间中构造的超空网是在自组装的大型中预先磨削 - 基于集合单路径培训策略进行缩放RSI数据集。接下来,预先培训的SuperNet通过可切换识别模块配备不同的识别头,并分别在目标数据集上进行微调,以获取特定于任务特定的超网络。最后,我们根据没有任何网络训练的进化算法,搜索最佳骨干架构进行不同识别任务。对于不同识别任务的五个基准数据集进行了广泛的实验,结果显示了所提出的搜索范例的有效性,并证明搜索后的骨干能够灵活地调整不同的RSI识别任务并实现令人印象深刻的性能。
translated by 谷歌翻译
近年来,计算机视觉社区中最受欢迎的技术之一就是深度学习技术。作为一种数据驱动的技术,深层模型需要大量准确标记的培训数据,这在许多现实世界中通常是无法访问的。数据空间解决方案是数据增强(DA),可以人为地从原始样本中生成新图像。图像增强策略可能因数据集而有所不同,因为不同的数据类型可能需要不同的增强以促进模型培训。但是,DA策略的设计主要由具有领域知识的人类专家决定,这被认为是高度主观和错误的。为了减轻此类问题,一个新颖的方向是使用自动数据增强(AUTODA)技术自动从给定数据集中学习图像增强策略。 Autoda模型的目的是找到可以最大化模型性能提高的最佳DA策略。这项调查从图像分类的角度讨论了Autoda技术出现的根本原因。我们确定标准自动赛车模型的三个关键组件:搜索空间,搜索算法和评估功能。根据他们的架构,我们提供了现有图像AUTODA方法的系统分类法。本文介绍了Autoda领域的主要作品,讨论了他们的利弊,并提出了一些潜在的方向以进行未来的改进。
translated by 谷歌翻译
作为深度图像分类应用,例如,人脸识别,在我们日常生活中越来越普遍,他们的公平问题提高了越来越多的关注。因此,在部署之前全面地测试这些应用的公平性是至关重要的。现有的公平测试方法遭受以下限制:1)适用性,即它们仅适用于结构化数据或文本,而无需处理图像分类应用的语义水平中的高维和抽象域采样; 2)功能,即,它们在不提供测试标准的情况下产生不公平的样本,以表征模型的公平性充足。为了填补差距,我们提出了Deepfait,是专门为深图图像分类应用而设计的系统公平测试框架。 Deepfait由几种重要组成部分组成,实现了对深度图像分类应用的有效公平测试的重要组成部分:1)神经元选择策略,用于识别与公平相关神经元的神经元; 2)一组多粒度充足度指标,以评估模型的公平性; 3)测试选择算法有效地修复公平问题。我们对广泛采用的大型面部识别应用,即VGGFace和Fairface进行了实验。实验结果证实,我们的方法可以有效地识别公平相关的神经元,表征模型的公平性,并选择最有价值的测试用例来减轻模型的公平问题。
translated by 谷歌翻译
尽管他们成功了,但已显示深网非常容易受到扰动,通常会导致准确性大幅下降。在本文中,我们通过研究内部子网(子网)的性能来研究模型对扰动输入的鲁棒性。有趣的是,我们观察到大多数子网对扰动表现出特别差的鲁棒性。更重要的是,这些弱子网与整体缺乏鲁棒性有关。解决这一现象,我们提出了一种新的培训程序,该程序可以识别和增强弱子网(EWS)以提高鲁棒性。具体而言,我们开发了一种搜索算法,以找到特别弱的子网,并通过从完整网络中的知识蒸馏来明确加强它们。我们表明,EWS极大地提高了针对损坏的图像的鲁棒性以及清洁数据的准确性。与流行的数据增强方法互补,EWS与这些方法结合使用时会始终提高鲁棒性。为了强调我们方法的灵活性,我们还将EWS与流行的对抗训练方法相结合,从而改善了对抗性的鲁棒性。
translated by 谷歌翻译
尽管在许多应用中取得了巨大的成功,但深度神经网络在实践中并不总是强大的。例如,用于分类任务的卷积神经元网络(CNN)模型通常在对某些特定类别的对象分类时表现不佳。在这项工作中,我们关注的是修补CNN模型的弱部分,而不是通过整个模型的昂贵重新培训来改进它。受到软件工程中模块化和组成的基本概念的启发,我们提出了一种压缩模块化方法CNNSplitter,该方法将$ N $ class分类的强CNN模型分解为$ n $ n $ n $ n $ smill CNN模块。每个模块都是一个子模型,其中包含强模型的卷积内核的一部分。为了修补对目标类(TC)进行不满意的弱CNN模型,我们将弱的CNN模型与从强CNN模型获得的相应模块组成。因此,弱CNN模型识别TC的能力可以通过修补来提高。此外,识别非TCS的能力也得到了提高,因为将样品错误分类为TC可以正确分类为非TCS。在三个广泛使用的数据集上使用两个代表性CNN的实验结果表明,在精度和召回方面,TC的平均改进分别为12.54%和2.14%。此外,修补程序将非TCS的准确性提高了1.18%。结果表明,CNNSplitter可以通过模块化和组成来修补弱的CNN模型,从而为开发可靠的CNN模型提供了新的解决方案。
translated by 谷歌翻译