我们研究机器学习(ML)和深度学习(DL)算法的能力,基于地下温度观察推断表面/地面交换通量。观察和助势是由代表哥伦比亚河附近的高分辨率数值模型,位于华盛顿州东南部的能源部汉福德遗址附近。随机测量误差,不同幅度的加入合成温度观察。结果表明,两个ML和DL方法可用于推断表面/地面交换通量。 DL方法,尤其是卷积神经网络,当用于用施加的平滑滤波器解释噪声温度数据时越高。然而,ML方法也表现良好,它们可以更好地识别减少数量的重要观察,这对于测量网络优化也是有用的。令人惊讶的是,M1和DL方法比向下通量更好地推断出向上的助焊剂。这与使用数值模型从温度观测推断出来的先前发现与先前的发现与先前的发现相反,并且可能表明将ML或DL推断的组合使用与数值推断相结合可以改善河流系统下方的助焊剂估计。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
我们提出并展示了一种基于物理引导的机器学习的城市排水系统液压系统快速准确的替代建模的新方法。替代物是根据流体动力(HIFI)模型的一组有限的仿真结果训练的。与HIFI模型相比,我们的方法将模拟时间减少了一到两个数量级。因此,它比例如概念性水文模型,但它可以模拟排水网络的所有节点和链接中的水位,流和附加费,因此很大程度上保留了HIFI模型提供的细节水平。比较由替代物和HIFI模型模拟的时间序列,达到了0.9顺序的R2值。替代培训时间目前为一小时。但是,可以通过应用转移学习和图形神经网络来减少它们。我们的替代方法对于城市排水系统的初始设计阶段以及实时应用的互动讲习班将很有用。此外,我们的模型公式是通用的,未来的研究应调查其在模拟其他供水系统中的应用。
translated by 谷歌翻译
天然气管道中的泄漏检测是石油和天然气行业的一个重要且持续的问题。这尤其重要,因为管道是运输天然气的最常见方法。这项研究旨在研究数据驱动的智能模型使用基本操作参数检测天然气管道的小泄漏的能力,然后使用现有的性能指标比较智能模型。该项目应用观察者设计技术,使用回归分类层次模型来检测天然气管道中的泄漏,其中智能模型充当回归器,并且修改后的逻辑回归模型充当分类器。该项目使用四个星期的管道数据流研究了五个智能模型(梯度提升,决策树,随机森林,支持向量机和人工神经网络)。结果表明,虽然支持向量机和人工神经网络比其他网络更好,但由于其内部复杂性和所使用的数据量,它们并未提供最佳的泄漏检测结果。随机森林和决策树模型是最敏感的,因为它们可以在大约2小时内检测到标称流量的0.1%的泄漏。所有智能模型在测试阶段中具有高可靠性,错误警报率为零。将所有智能模型泄漏检测的平均时间与文献中的实时短暂模型进行了比较。结果表明,智能模型在泄漏检测问题中的表现相对较好。该结果表明,可以与实时瞬态模型一起使用智能模型,以显着改善泄漏检测结果。
translated by 谷歌翻译
A well-performing prediction model is vital for a recommendation system suggesting actions for energy-efficient consumer behavior. However, reliable and accurate predictions depend on informative features and a suitable model design to perform well and robustly across different households and appliances. Moreover, customers' unjustifiably high expectations of accurate predictions may discourage them from using the system in the long term. In this paper, we design a three-step forecasting framework to assess predictability, engineering features, and deep learning architectures to forecast 24 hourly load values. First, our predictability analysis provides a tool for expectation management to cushion customers' anticipations. Second, we design several new weather-, time- and appliance-related parameters for the modeling procedure and test their contribution to the model's prediction performance. Third, we examine six deep learning techniques and compare them to tree- and support vector regression benchmarks. We develop a robust and accurate model for the appliance-level load prediction based on four datasets from four different regions (US, UK, Austria, and Canada) with an equal set of appliances. The empirical results show that cyclical encoding of time features and weather indicators alongside a long-short term memory (LSTM) model offer the optimal performance.
translated by 谷歌翻译
机器学习(ML)是指根据大量数据预测有意义的输出或对复杂系统进行分类的计算机算法。 ML应用于各个领域,包括自然科学,工程,太空探索甚至游戏开发。本文的重点是在化学和生物海洋学领域使用机器学习。在预测全球固定氮水平,部分二氧化碳压力和其他化学特性时,ML的应用是一种有前途的工具。机器学习还用于生物海洋学领域,可从各种图像(即显微镜,流车和视频记录器),光谱仪和其他信号处理技术中检测浮游形式。此外,ML使用其声学成功地对哺乳动物进行了分类,在特定的环境中检测到濒临灭绝的哺乳动物和鱼类。最重要的是,使用环境数据,ML被证明是预测缺氧条件和有害藻华事件的有效方法,这是对环境监测的重要测量。此外,机器学习被用来为各种物种构建许多对其他研究人员有用的数据库,而创建新算法将帮助海洋研究界更好地理解海洋的化学和生物学。
translated by 谷歌翻译
由一维卷积神经网络(1D-CNN)和长短期存储器(LSTM)网络组成的架构,该架构被提出为CNNSLSTM,用于在此中进行每小时降雨 - 径流模型学习。在CNNSLTSM中,CNN分量在长时间接收小时气象时间序列数据,然后LSTM组件从1D-CNN和小时气象时间序列数据接收提取的特征以进行短期持续时间。以案例研究为例,CNNSLSTM在日本伊希卡里河流域的每小时降雨径流建模。气象数据集由沉淀,空气温度,蒸发散,和长波辐射组成,用作输入,河流流量用作目标数据。为了评估所提出的CNNSLSTM的性能,将CNNSLSTM的结果与1D-CNN,LSTM的结果进行比较,仅用每小时输入(LSTMWHOUT),1D-CNN和LSTM(CNNPLSTM)的并行架构,以及使用每日的LSTM架构每小时输入数据(LSTMWDPH)。与三个传统架构(1D-CNN,LSTMWHOUL和CNNPLSTM)相比,CNNSLSTM对估计准确度明显改进,最近提出了LSTMWDPH。与观察到的流动相比,测试时段的NSE值的中值为0.455-0.469,用于1d-CNN(基于NCHF = 8,16和32,第一层的特征图的信道的数量CNN),用于CNNPLSTM的0.639-0.656(基于NCHF = 8,16和32),LSTMWHOUR的0.745,LSTMWDPH的0.831,CNNSLSTM为0.865-0.873(基于NCHF = 8,16和32)。此外,所提出的CNNSLSTM将1D-CNN的中值降低50.2%-51.4%,CNPLSTM在37.4%-40.8%,LSTMWHOUR,达27.3%-29.5%,LSTMWDPH为10.6%-13.4%。
translated by 谷歌翻译
目前,由精确的径向速度(RV)观察结果受到恒星活性引入的虚假RV信号的限制。我们表明,诸如线性回归和神经网络之类的机器学习技术可以有效地从RV观测中删除活动信号(由于星形/张图引起的)。先前的工作着重于使用高斯工艺回归等建模技术仔细地过滤活性信号(例如Haywood等人,2014年)。取而代之的是,我们仅使用对光谱线平均形状的更改进行系统地删除活动信号,也没有有关收集观测值的信息。我们对模拟数据(使用SOAP 2.0软件生成; Dumusque等人,2014年生成)和从Harps-N太阳能望远镜(Dumusque等,2015; Phillips等人2015; 2016; Collier训练)培训了机器学习模型。 Cameron等人2019)。我们发现,这些技术可以从模拟数据(将RV散射从82 cm/s提高到3 cm/s)以及从HARPS-N太阳能望远镜中几乎每天进行的600多种真实观察结果来预测和消除恒星活动(将RV散射从82 cm/s提高到3 cm/s)。 (将RV散射从1.753 m/s提高到1.039 m/s,提高了约1.7倍)。将来,这些或类似的技术可能会从太阳系以外的恒星观察中去除活动信号,并最终有助于检测到阳光状恒星周围可居住的区域质量系外行星。
translated by 谷歌翻译
在概述中,引入了通用数学对象(映射),并解释了其与模型物理参数化的关系。引入了可用于模拟和/或近似映射的机器学习(ML)工具。ML的应用在模拟现有参数化,开发新的参数化,确保物理约束和控制开发应用程序的准确性。讨论了一些允许开发人员超越标准参数化范式的ML方法。
translated by 谷歌翻译
As ride-hailing services become increasingly popular, being able to accurately predict demand for such services can help operators efficiently allocate drivers to customers, and reduce idle time, improve congestion, and enhance the passenger experience. This paper proposes UberNet, a deep learning Convolutional Neural Network for short-term prediction of demand for ride-hailing services. UberNet empploys a multivariate framework that utilises a number of temporal and spatial features that have been found in the literature to explain demand for ride-hailing services. The proposed model includes two sub-networks that aim to encode the source series of various features and decode the predicting series, respectively. To assess the performance and effectiveness of UberNet, we use 9 months of Uber pickup data in 2014 and 28 spatial and temporal features from New York City. By comparing the performance of UberNet with several other approaches, we show that the prediction quality of the model is highly competitive. Further, Ubernet's prediction performance is better when using economic, social and built environment features. This suggests that Ubernet is more naturally suited to including complex motivators in making real-time passenger demand predictions for ride-hailing services.
translated by 谷歌翻译
在所需的环境保护系统中,可能不排除地下水。除了过度开发的问题外,与可持续发展的概念完全分歧外,另一个不容易忽略的问题涉及地下水的污染。主要是由于强化农业活动或工业化地区。在文献中,有几篇论文处理了运输问题,尤其是在确定发布历史记录或源位置的反问题上。本文的创新目的是开发一个数据驱动的模型,该模型能够分析多种情况,甚至强烈非线性,以解决前进和反向运输问题,从而保留结果的可靠性并降低不确定性。此外,该工具具有提供极快响应的特征,对于立即确定补救策略至关重要。将模型产生的优点与文献研究进行了比较。在这方面,经过训练以处理不同情况的馈电馈线人工神经网络代表数据驱动的模型。首先,在研究区域的特定观察点上确定污染物的浓度(正向问题);其次,要处理识别已知源位置的发布历史记录的反问题;然后,在一个污染物来源的情况下,确定了释放历史记录,同时识别源在研究区域的特定子域中的位置。最后,研究并估计了观察误差。结果令人满意地实现了结果,突出了ANN通过近似非线性函数来处理多种情况的能力,而无需物理观点来描述该现象,从而提供可靠的结果,并具有非常低的计算负担和不确定性。
translated by 谷歌翻译
作为自然现象的地震,历史上不断造成伤害和人类生活的损失。地震预测是任何社会计划的重要方面,可以增加公共准备,并在很大程度上减少损坏。然而,由于地震的随机特征以及实现了地震预测的有效和可靠模型的挑战,迄今为止努力一直不足,需要新的方法来解决这个问题。本文意识到​​这些问题,提出了一种基于注意机制(AM),卷积神经网络(CNN)和双向长短期存储器(BILSTM)模型的新型预测方法,其可以预测数量和最大幅度中国大陆各地区的地震为基于该地区的地震目录。该模型利用LSTM和CNN具有注意机制,以更好地关注有效的地震特性并产生更准确的预测。首先,将零阶保持技术应用于地震数据上的预处理,使得模型的输入数据更适当。其次,为了有效地使用空间信息并减少输入数据的维度,CNN用于捕获地震数据之间的空间依赖性。第三,使用Bi-LSTM层来捕获时间依赖性。第四,引入了AM层以突出其重要的特征来实现更好的预测性能。结果表明,该方法具有比其他预测方法更好的性能和概括能力。
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译
A methodology is proposed, which addresses the caveat that line-of-sight emission spectroscopy presents in that it cannot provide spatially resolved temperature measurements in nonhomogeneous temperature fields. The aim of this research is to explore the use of data-driven models in measuring temperature distributions in a spatially resolved manner using emission spectroscopy data. Two categories of data-driven methods are analyzed: (i) Feature engineering and classical machine learning algorithms, and (ii) end-to-end convolutional neural networks (CNN). In total, combinations of fifteen feature groups and fifteen classical machine learning models, and eleven CNN models are considered and their performances explored. The results indicate that the combination of feature engineering and machine learning provides better performance than the direct use of CNN. Notably, feature engineering which is comprised of physics-guided transformation, signal representation-based feature extraction and Principal Component Analysis is found to be the most effective. Moreover, it is shown that when using the extracted features, the ensemble-based, light blender learning model offers the best performance with RMSE, RE, RRMSE and R values of 64.3, 0.017, 0.025 and 0.994, respectively. The proposed method, based on feature engineering and the light blender model, is capable of measuring nonuniform temperature distributions from low-resolution spectra, even when the species concentration distribution in the gas mixtures is unknown.
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
评估能源转型和能源市场自由化对资源充足性的影响是一种越来越重要和苛刻的任务。能量系统的上升复杂性需要足够的能量系统建模方法,从而提高计算要求。此外,随着复杂性,同样调用概率评估和场景分析同样增加不确定性。为了充分和高效地解决这些各种要求,需要来自数据科学领域的新方法来加速当前方法。通过我们的系统文献综述,我们希望缩小三个学科之间的差距(1)电力供应安全性评估,(2)人工智能和(3)实验设计。为此,我们对所选应用领域进行大规模的定量审查,并制作彼此不同学科的合成。在其他发现之外,我们使用基于AI的方法和应用程序的AI方法和应用来确定电力供应模型的复杂安全性的元素,并作为未充分涵盖的应用领域的储存调度和(非)可用性。我们结束了推出了一种新的方法管道,以便在评估电力供应安全评估时充分有效地解决当前和即将到来的挑战。
translated by 谷歌翻译
探讨了使用深神经网络(DNN)模型作为线性和非线性结构动力系统的代理。目标是开发基于DNN的代理,以预测给定输入(谐波)激发的结构响应,即位移和加速度。特别是,重点是使用完全连接,稀疏连接和卷积网络层的有效网络架构的开发,以及相应的培训策略,可以在目标数据用品中的整体网络复杂性和预测准确性之间提供平衡。对于线性动力学,网络层中重量矩阵的稀疏模式用于构建具有稀疏层的卷积DNN。对于非线性动力学,显示网络层中的稀疏性丢失,并探讨了具有完全连接和卷积网络层的高效DNN架构。还介绍了转移学习策略以成功培训所提出的DNN,研究了影响网络架构的各种装载因素。结果表明,所提出的DNN可以用作在谐波载荷下预测线性和非线性动态响应的有效和准确的代理。
translated by 谷歌翻译
延时电阻率断层扫描(ERT)是一种流行的地球物理方法,可从电势差测量中估算三维(3D)通透性场。传统的反转和数据同化方法用于将这些数据吸收到水域模型中以估计渗透性。由于不适合性和维度的诅咒,现有的反转策略提供了较差的估计值和3D渗透率场的低分辨率。深度学习的最新进展为我们提供了强大的算法来克服这一挑战。本文提出了一个深度学习(DL)框架,以估算从延时ERT数据中的3D地下渗透性。为了测试所提出的框架的可行性,我们在模拟数据上训练了启用DL的逆模型。基于水域物理学的地下过程模型用于生成此合成数据以进行深度学习分析。结果表明,拟议的弱监督学习可以捕获3D渗透性领域中的显着空间特征。在数量上,在标记的训练,验证和测试数据集的平均平方平方误差(就自然日志而言)小于0.5。 R2评分(全局度量)大于0.75,每个单元格(本地度量)的百分比误差小于10%。最后,在计算成本方面的额外好处是,所提出的基于DL的反向模型至少比运行正向模型快的速度(104)倍。请注意,传统倒置可能需要多个前向模型模拟(例如,按10到1000的顺序),这非常昂贵。这种计算节省(O(105)-O(107))使提出的基于DL的逆模型具有对地下成像和实时ERT监视应用程序的吸引力,这是由于快速而相当准确的渗透性场估计。
translated by 谷歌翻译
传统上,基于标度律维模型已被用于参数对流换热岩类地行星像地球,火星,水星和金星的内部,以解决二维或三维高保真前插的计算瓶颈。然而,这些在物理它们可以建模(例如深度取决于材料特性),并预测只平均量的量的限制,例如平均温度地幔。我们最近发现,前馈神经网络(FNN),使用了大量的二维模拟可以克服这个限制和可靠地预测整个1D横向平均温度分布的演变,及时为复杂的模型训练。我们现在扩展该方法以预测的完整2D温度字段,它包含在对流结构如热羽状和冷downwellings的形式的信息。使用的地幔热演化的10,525二维模拟数据集火星般的星球,我们表明,深度学习技术能够产生可靠的参数代理人(即代理人即预测仅基于参数状态变量,如温度)底层偏微分方程。我们首先使用卷积自动编码由142倍以压缩温度场,然后使用FNN和长短期存储器网络(LSTM)来预测所述压缩字段。平均起来,FNN预测是99.30%,并且LSTM预测是准确相对于看不见模拟99.22%。在LSTM和FNN预测显示,尽管较低的绝对平均相对精度,LSTMs捕捉血流动力学优于FNNS适当的正交分解(POD)。当求和,从FNN预测和从LSTM预测量至96.51%,相对97.66%到原始模拟的系数,分别与POD系数。
translated by 谷歌翻译
Wind power forecasting helps with the planning for the power systems by contributing to having a higher level of certainty in decision-making. Due to the randomness inherent to meteorological events (e.g., wind speeds), making highly accurate long-term predictions for wind power can be extremely difficult. One approach to remedy this challenge is to utilize weather information from multiple points across a geographical grid to obtain a holistic view of the wind patterns, along with temporal information from the previous power outputs of the wind farms. Our proposed CNN-RNN architecture combines convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to extract spatial and temporal information from multi-dimensional input data to make day-ahead predictions. In this regard, our method incorporates an ultra-wide learning view, combining data from multiple numerical weather prediction models, wind farms, and geographical locations. Additionally, we experiment with global forecasting approaches to understand the impact of training the same model over the datasets obtained from multiple different wind farms, and we employ a method where spatial information extracted from convolutional layers is passed to a tree ensemble (e.g., Light Gradient Boosting Machine (LGBM)) instead of fully connected layers. The results show that our proposed CNN-RNN architecture outperforms other models such as LGBM, Extra Tree regressor and linear regression when trained globally, but fails to replicate such performance when trained individually on each farm. We also observe that passing the spatial information from CNN to LGBM improves its performance, providing further evidence of CNN's spatial feature extraction capabilities.
translated by 谷歌翻译