scikit-learn is an increasingly popular machine learning library. Written in Python, it is designed to be simple and efficient, accessible to non-experts, and reusable in various contexts. In this paper, we present and discuss our design choices for the application programming interface (API) of the project. In particular, we describe the simple and elegant interface shared by all learning and processing units in the library and then discuss its advantages in terms of composition and reusability. The paper also comments on implementation details specific to the Python ecosystem and analyzes obstacles faced by users and developers of the library.
translated by 谷歌翻译
Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.sourceforge.net.
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
Yggdrasil Decision Forests is a library for the training, serving and interpretation of decision forest models, targeted both at research and production work, implemented in C++, and available in C++, command line interface, Python (under the name TensorFlow Decision Forests), JavaScript, and Go. The library has been developed organically since 2018 following a set of four design principles applicable to machine learning libraries and frameworks: simplicity of use, safety of use, modularity and high-level abstraction, and integration with other machine learning libraries. In this paper, we describe those principles in detail and present how they have been used to guide the design of the library. We then showcase the use of our library on a set of classical machine learning problems. Finally, we report a benchmark comparing our library to related solutions.
translated by 谷歌翻译
Array programming provides a powerful, compact, expressive syntax for accessing, manipulating, and operating on data in vectors, matrices, and higher-dimensional arrays [1]. NumPy is the primary array programming library for the Python language [2,3,4,5]. It plays an essential role in research analysis pipelines in fields as diverse as physics, chemistry, astronomy, geoscience, biology, psychology, material science, engineering, finance, and economics. For example, in astronomy, NumPy was an important part of the software stack used in the discovery of gravitational waves [6] and the first imaging of a black hole [7].Here we show how a few fundamental array concepts lead to a simple and powerful programming paradigm for organizing, exploring, and analyzing scientific data. NumPy is the foundation upon which the entire scientific Python universe is constructed. It is so pervasive that several projects, targeting audiences with specialized needs, have developed their own NumPy-like interfaces and array objects. Because of its central position in the ecosystem, NumPy increasingly plays the role of an interoperability layer between these new array computation libraries.
translated by 谷歌翻译
无论是在功能选择的领域还是可解释的AI领域,都有基于其重要性的“排名”功能的愿望。然后可以将这种功能重要的排名用于:(1)减少数据集大小或(2)解释机器学习模型。但是,在文献中,这种特征排名没有以系统的,一致的方式评估。许多论文都有不同的方式来争论哪些具有重要性排名最佳的特征。本文通过提出一种新的评估方法来填补这一空白。通过使用合成数据集,可以事先知道特征重要性得分,从而可以进行更系统的评估。为了促进使用新方法的大规模实验,在Python建造了一个名为FSEVAL的基准测定框架。该框架允许并行运行实验,并在HPC系统上的计算机上分布。通过与名为“权重和偏见”的在线平台集成,可以在实时仪表板上进行交互探索图表。该软件作为开源软件发布,并在PYPI平台上以包裹发行。该研究结束时,探索了一个这样的大规模实验,以在许多方面找到参与算法的优势和劣势。
translated by 谷歌翻译
我们介绍了数据科学预测生命周期中各个阶段开发和采用自动化的技术和文化挑战的说明概述,从而将重点限制为使用结构化数据集的监督学习。此外,我们回顾了流行的开源Python工具,这些工具实施了针对自动化挑战的通用解决方案模式,并突出了我们认为进步仍然需要的差距。
translated by 谷歌翻译
Machine Learning for Source Code (ML4Code) is an active research field in which extensive experimentation is needed to discover how to best use source code's richly structured information. With this in mind, we introduce JEMMA, an Extensible Java Dataset for ML4Code Applications, which is a large-scale, diverse, and high-quality dataset targeted at ML4Code. Our goal with JEMMA is to lower the barrier to entry in ML4Code by providing the building blocks to experiment with source code models and tasks. JEMMA comes with a considerable amount of pre-processed information such as metadata, representations (e.g., code tokens, ASTs, graphs), and several properties (e.g., metrics, static analysis results) for 50,000 Java projects from the 50KC dataset, with over 1.2 million classes and over 8 million methods. JEMMA is also extensible allowing users to add new properties and representations to the dataset, and evaluate tasks on them. Thus, JEMMA becomes a workbench that researchers can use to experiment with novel representations and tasks operating on source code. To demonstrate the utility of the dataset, we also report results from two empirical studies on our data, ultimately showing that significant work lies ahead in the design of context-aware source code models that can reason over a broader network of source code entities in a software project, the very task that JEMMA is designed to help with.
translated by 谷歌翻译
软件测试可能是一个漫长且昂贵的过程,尤其是如果无法测试的软件进行测试。重构技术可以通过改善影响可检验性的软件指标来增强可检验性。在构建回归模型学习如何将计算的源代码计算指标与其可检验性相关联的指标时,确定了指标。我们确定了15个软件指标,在解释我们的可检测性预测模型的同时,高度影响可检验性。我们使用42个Java类的实验表明,除了改善其他一些质量属性外,改善这15个指标的重构平均可以提高可测试性15.57%。我们的可测试性预测模型经过训练,可以映射源代码指标,以测试有效性和效率,作为可测试软件的两种重要成分。随着测试套件获得的覆盖范围的增加,测试有效性会提高。另一方面,随着测试套件的大小增加,测试效率会降低。本文提供了一个数学模型,以根据测试套件的大小和覆盖范围来计算类可检验性。我们使用此数学模型来计算可测试性作为我们可检测性预测模型的目标。数学模型要求执行正在测试的类以计算测试覆盖范围,而我们的回归模型在静态上测量了测试性。在测试性方面的测试结果预测应在测试之前,以避免不必要的成本。我们的可测试性预测模型已在23,886个Java类和262个软件指标上进行了培训和测试。学习的模型以R2为0.68,平均平方误差为0.03,可预测可验证性。
translated by 谷歌翻译
自主机器人结合了各种技能,形成越来越复杂的行为,称为任务。尽管这些技能通常以相对较低的抽象级别进行编程,但它们的协调是建筑分离的,并且经常以高级语言或框架表达。几十年来,州机器一直是首选的语言,但是最近,行为树的语言在机器人主义者中引起了人们的关注。行为树最初是为计算机游戏设计的,用于建模自主参与者,提供了基于树木的可扩展的使命表示,并受到支持支持模块化设计和代码的重复使用。但是,尽管使用了该语言的几种实现,但对现实世界中的用法和范围知之甚少。行为树提供的概念与传统语言(例如州机器)有何关系?应用程序中如何使用行为树和状态机概念?我们介绍了对行为树中关键语言概念的研究及其在现实世界机器人应用中的使用。我们识别行为树语言,并将其语义与机器人技术中最著名的行为建模语言进行比较。我们为使用这些语言的机器人应用程序挖掘开源存储库并分析此用法。我们发现两种行为建模语言在语言设计及其在开源项目中的用法之间的相似性方面,以满足机器人域的需求。我们为现实世界行为模型的数据集提供了贡献,希望激发社区使用和进一步开发这种语言,相关的工具和分析技术。
translated by 谷歌翻译
Bridging cultures that have often been distant, Julia combines expertise from the diverse fields of computer science and computational science to create a new approach to numerical computing. Julia is designed to be easy and fast. Julia questions notions generally held as "laws of nature" by practitioners of numerical computing:1. High-level dynamic programs have to be slow, 2. One must prototype in one language and then rewrite in another language for speed or deployment, and 3. There are parts of a system for the programmer, and other parts best left untouched as they are built by the experts.We introduce the Julia programming language and its design -a dance between specialization and abstraction. Specialization allows for custom treatment. Multiple dispatch, a technique from computer science, picks the right algorithm for the right circumstance. Abstraction, what good computation is really about, recognizes what remains the same after differences are stripped away. Abstractions in mathematics are captured as code through another technique from computer science, generic programming.Julia shows that one can have machine performance without sacrificing human convenience.
translated by 谷歌翻译
模型用于软件工程(SE)和人工智能(AI)。 SE模型可以在不同抽象层次的架构中指定架构,并从早期概念化和设计,从软件开发生命周期的各个阶段解决不同的问题,以验证,实施,测试和演化。然而,AI模型可以提供智能能力,例如预测和决策支持。例如,在机器学习(ml)中,这是目前是AI的最受欢迎的子学科,数学模型可能会在观察到的数据中学习有用的模式,并且可以成为能够进行预测。这项工作的目标是通过将在所述社区的模型聚集在一起并提出一种需要ML的智能系统的模型驱动软件开发的整体方法来创建协同作用。我们说明了软件模型如何能够以无缝方式创建和处理ML模型。主要焦点位于事物互联网(物联网)的领域,其中ML和模型驱动的SE都发挥着关键作用。在需要采取有针对性架构的网络物理系统的系统视角下,SE和ML子系统的集成设计环境将最能支持所得系统实现的优化和整体效率。特别是,我们实现了基于INTOMML的CL-Quadrat的所提出的方法,并使用来自物联网域的案例研究以及经验用户评估来验证它。它归还所提出的方法不仅是可行的,而且还可能有助于与IOT连接的智能网络物理系统(CPS)的软件开发的性能飞跃,以及增强的使用者的用户体验建议的建模解决方案。
translated by 谷歌翻译
比较不同的汽车框架是具有挑战性的,并且经常做错了。我们引入了一个开放且可扩展的基准测试,该基准遵循最佳实践,并在比较自动框架时避免常见错误。我们对71个分类和33项回归任务进行了9个著名的自动框架进行了详尽的比较。通过多面分析,评估模型的准确性,与推理时间的权衡以及框架失败,探索了自动框架之间的差异。我们还使用Bradley-terry树来发现相对自动框架排名不同的任务子集。基准配备了一个开源工具,该工具与许多自动框架集成并自动化经验评估过程端到端:从框架安装和资源分配到深入评估。基准测试使用公共数据集,可以轻松地使用其他Automl框架和任务扩展,并且具有最新结果的网站。
translated by 谷歌翻译
一般矩阵乘法或GEMM内核在高性能计算和机器学习中占据中心位置。最近的NVIDIA GPU包括Gemm加速器,如Nvidia的张量核心。他们的剥削受到双语言问题的阻碍:它需要低级编程,这意味着低程序员的工作效率或使用只提供有限组件集的库。由于建立的组件方面的REPRASING算法经常引入开销,因此图书馆缺乏灵活性限制了探索新算法的自由。因此,使用GEMMS的研究人员无法立即享受编程生产力,高性能和研究灵活性。在本文中,我们解决了这个问题。我们在科学朱莉娅编程语言中展示了三组抽象和接口来编程宝石。界面和抽象共同设计用于研究人员的需求和朱莉娅的特征,以实现足够的担忧和灵活性的充分分离,以便在不支付性能价格的情况下轻松地扩展基本宝石。将我们的Gemms与最先进的图书馆Cublas和Cutlass进行比较,我们证明我们的性能在图书馆的相同球场中,并且在某些情况下甚至超过它,而无需在CUDA C ++中编写单行代码或者组装,而不面临灵活限制。
translated by 谷歌翻译
This paper presents the OPUS ecosystem with a focus on the development of open machine translation models and tools, and their integration into end-user applications, development platforms and professional workflows. We discuss our on-going mission of increasing language coverage and translation quality, and also describe on-going work on the development of modular translation models and speed-optimized compact solutions for real-time translation on regular desktops and small devices.
translated by 谷歌翻译
天然气管道中的泄漏检测是石油和天然气行业的一个重要且持续的问题。这尤其重要,因为管道是运输天然气的最常见方法。这项研究旨在研究数据驱动的智能模型使用基本操作参数检测天然气管道的小泄漏的能力,然后使用现有的性能指标比较智能模型。该项目应用观察者设计技术,使用回归分类层次模型来检测天然气管道中的泄漏,其中智能模型充当回归器,并且修改后的逻辑回归模型充当分类器。该项目使用四个星期的管道数据流研究了五个智能模型(梯度提升,决策树,随机森林,支持向量机和人工神经网络)。结果表明,虽然支持向量机和人工神经网络比其他网络更好,但由于其内部复杂性和所使用的数据量,它们并未提供最佳的泄漏检测结果。随机森林和决策树模型是最敏感的,因为它们可以在大约2小时内检测到标称流量的0.1%的泄漏。所有智能模型在测试阶段中具有高可靠性,错误警报率为零。将所有智能模型泄漏检测的平均时间与文献中的实时短暂模型进行了比较。结果表明,智能模型在泄漏检测问题中的表现相对较好。该结果表明,可以与实时瞬态模型一起使用智能模型,以显着改善泄漏检测结果。
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
只要可以预见的是测试代码的固有特征,可以大大降低测试的高成本。本文提供了一种机器学习模型,以预测测试可以在多大程度上覆盖一个名为Coverabeality的新指标。预测模型由四个回归模型的集合组成。学习样本由特征向量组成,其中特征是为类计算的源代码指标。样品由针对其相应类计算的覆盖率值标记。我们提供了一个数学模型,以评估每个班级自动生成的测试套件的尺寸和覆盖范围的测试效果。我们通过引入一种新方法来根据现有源代码指标来定义子计量数来扩展功能空间的大小。使用功能重要性分析在学习的预测模型上,我们按照对测试效果的影响顺序对源代码指标进行排序。结果,我们发现类别严格的循环复杂性是最有影响力的源代码度量。我们对包含大约23,000个类的大型Java项目的预测模型进行的实验表明,平均绝对误差(MAE)为0.032,平均平方误差(MSE)为0.004,R2得分为0.855。与最先进的覆盖范围预测模型相比,我们的模型分别提高了MAE,MSE和R2得分5.78%,2.84%和20.71%。
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
如今,由于最近在人工智能(AI)和机器学习(ML)中的近期突破,因此,智能系统和服务越来越受欢迎。然而,机器学习不仅满足软件工程,不仅具有有希望的潜力,而且还具有一些固有的挑战。尽管最近的一些研究努力,但我们仍然没有明确了解开发基于ML的申请和当前行业实践的挑战。此外,目前尚不清楚软件工程研究人员应将其努力集中起来,以更好地支持ML应用程序开发人员。在本文中,我们报告了一个旨在了解ML应用程序开发的挑战和最佳实践的调查。我们合成从80名从业者(以不同的技能,经验和应用领域)获得的结果为17个调查结果;概述ML应用程序开发的挑战和最佳实践。参与基于ML的软件系统发展的从业者可以利用总结最佳实践来提高其系统的质量。我们希望报告的挑战将通知研究界有关需要调查的主题,以改善工程过程和基于ML的申请的质量。
translated by 谷歌翻译