2022年,乌克兰遭受了入侵,随着时间的流逝和地理位置的急剧影响。本文研究了使用分析以及基于区域的网络模型对持续中断对交通行为的影响。该方法是一种数据驱动的方法,该方法利用了在进化算法框架内获得的旅行时间条件,该算法框架在基于流量分配的自动化过程中渗透了原始过程的需求值。由于实施的自动化,可以为多个城市近似众多的每日模型。本文与先前发表的核心方法的新颖性包括一项分析,以确保获得的数据合适,因为由于持续的破坏,某些数据源被禁用。此外,新颖性包括将分析与中断时间表的直接联系,以新的方式检查相互作用。最后,确定了特定的网络指标,这些指标特别适合概念化冲突中断对交通网络条件的影响。最终目的是建立过程,概念和分析,以促进快速量化冲突情景的交通影响的更广泛的活动。
translated by 谷歌翻译
在清晨预测交通动态时,传统交通预测方法的有效性通常非常有限。原因是在清晨通勤期间交通可能会彻底分解,这个分解的时间和持续时间大幅度从日常生活中变化。清晨的交通预测是通知午餐的交通管理至关重要,但他们通常会提前预测,特别是在午夜预测。在本文中,我们建议将Twitter消息作为探测方法,了解在前一天晚上/午夜的人们工作和休息模式的影响到下一天的早晨交通。该模型在匹兹堡的高速公路网络上进行了测试,作为实验。由此产生的关系令人惊讶地简单且强大。我们发现,一般来说,早些时候的人休息如推文所示,即第二天早上就越拥挤的道路就越多。之前的大事发生了大事,由更高或更低的Tweet情绪表示,比正常,通常意味着在第二天早上的旅行需求较低。此外,人们在前一天晚上和清晨的鸣叫活动与早晨高峰时段的拥堵有统计学相关。我们利用这种关系来构建一个预测框架,预测早晨的通勤充血使用5时或早晨午夜提取的人的推特型材。匹兹堡研究支持我们的框架可以精确预测早晨拥塞,特别是对于具有大型日常充血变异的道路瓶颈上游的一些道路段。我们的方法在没有Twitter消息功能的情况下大大差异,可以从提供管理洞察力的推文配置文件中学习有意义的需求表示。
translated by 谷歌翻译
空间数据在应对与城市相关的任务中的作用近年来一直在增长。要在机器学习模型中使用它们,通常需要将它们转换为向量表示,这导致了空间数据表示学习领域的开发。还有一种越来越多的各种空间数据类型,提出了一种表示学习方法。迄今为止,公共交通时间表迄今未被用于一个城市地区的学习陈述的任务。在这项工作中,开发了一种方法来将公共交通可用性信息嵌入到矢量空间中。要对其申请进行实验,从48个城市收集公共交通时间表。使用H3空间索引方法,它们被分成微区域。还提出了一种方法来识别具有类似公共交通报价特征的地区。在其基础上,定义了该地区的公共交通报价的多层次类型。本文表明,所提出的表示方法可以识别城市之间具有相似公共交通特性的微区域,并且可用于评估城市中可用的公共交通的质量。
translated by 谷歌翻译
近年来,物联网设备的数量越来越快,这导致了用于管理,存储,分析和从不同物联网设备的原始数据做出决定的具有挑战性的任务,尤其是对于延时敏感的应用程序。在车辆网络(VANET)环境中,由于常见的拓扑变化,车辆的动态性质使当前的开放研究发出更具挑战性,这可能导致车辆之间断开连接。为此,已经在5G基础设施上计算了云和雾化的背景下提出了许多研究工作。另一方面,有多种研究提案旨在延长车辆之间的连接时间。已经定义了车辆社交网络(VSN)以减少车辆之间的连接时间的负担。本调查纸首先提供了关于雾,云和相关范例,如5G和SDN的必要背景信息和定义。然后,它将读者介绍给车辆社交网络,不同的指标和VSN和在线社交网络之间的主要差异。最后,本调查调查了在展示不同架构的VANET背景下的相关工作,以解决雾计算中的不同问题。此外,它提供了不同方法的分类,并在雾和云的上下文中讨论所需的指标,并将其与车辆社交网络进行比较。与VSN和雾计算领域的新研究挑战和趋势一起讨论了相关相关工程的比较。
translated by 谷歌翻译
交通预测模型依赖需要感测,处理和存储的数据。这需要部署和维护交通传感基础设施,往往导致不适合的货币成本。缺乏感测的位置可以与合成数据模拟相辅相成,进一步降低交通监测所需的经济投资。根据类似道路的数据分布,其中最常见的数据生成方法之一包括产生实际的流量模式。检测具有相似流量的道路的过程是这些系统的关键点。但是,在不收集目标位置收集数据,没有用于该相似性的搜索可以使用流量度量。我们提出了一种通过检查道路段的拓扑特征来发现具有可用流量数据的方法的方法。相关的拓扑功能被提取为数值表示(嵌入式)以比较不同的位置,并最终根据其嵌入之间的相似性找到最相似的道路。检查该新颖选择系统的性能,并与更简单的流量估计方法进行比较。找到类似的数据源后,使用生成方法来合成流量配置文件。根据感知道路的交通行为的相似性,可以使用一条路的数据来馈送生成方法。在合成样品的精度方面分析了几种代理方法。最重要的是,这项工作打算促进进一步的研究努力提高综合交通样本的质量,从而降低对传感基础设施的需求。
translated by 谷歌翻译
大气污染仍然是全球主要的公共卫生威胁之一,估计每年7万人死亡。在非洲,快速的城市化和运输基础设施不良正在加剧问题。在本文中,我们分析了非洲不同地理区域的PM2.5的时空变化。西非地区仍然受到高水平污染的影响最大,每天平均40.856 $ \ mu g/m^3 $在拉各斯,阿布贾和巴马科等某些城市。在东非,乌干达报告的污染水平最高,每日平均浓度为56.14 $ \ mu g/m^3 $和38.65 $ \ mu g/m^3 $,用于基加利。在非洲中部地区的国家/地区,每日最高的平均浓度为90.075 $ \ mu g/m^3 $,记录在N'djamena中。我们比较了三个数据驱动模型,以预测污染水平的未来趋势。神经网络的表现优于高斯过程和Arima模型。
translated by 谷歌翻译
现代神经语言模型广泛用于任务中的任务,跨越培训数据记忆敏感信息。由于模型继续扩大参数,培训数据和计算,从学习理论的角度来看,培训数据和计算中的记忆既重要性也很重要,并且在现实世界应用中实际上至关重要。在语言模型中记忆的研究中的一个开放问题是如何过滤掉“常见的”记忆。事实上,大多数记忆标准与培训集的出现数量强烈关联,捕获“常见”记忆,例如熟悉的短语,公共知识或模板文本。在本文中,我们提供了由心理学中人类记忆分类的理性观点。从这个角度来看,我们制定了反事实记忆的概念,这表征了模型的预测如何改变,如果在训练期间省略了特定文件。我们在标准文本数据集中识别并研究了反复记忆培训示例。我们进一步估计每个训练示例对验证集和生成文本的影响,并显示这可以提供在测试时间的记忆源的直接证据。
translated by 谷歌翻译
在带有电动车队的乘车系统中,充电是一个复杂的决策过程。大多数电动汽车(EV)出租车服务要求驾驶员做出利己主义决定,从而导致分散的临时充电策略。车辆之间通常缺乏或不共享移动性系统的当前状态,因此无法做出最佳的决定。大多数现有方法都不将时间,位置和持续时间结合到全面的控制算法中,也不适合实时操作。因此,我们提出了一种实时预测性充电方法,用于使用一个名为“闲置时间开发(ITX)”的单个操作员进行乘车服务,该方法预测了车辆闲置并利用这些时期来收获能量的时期。它依靠图形卷积网络和线性分配算法来设计最佳的车辆和充电站配对,以最大程度地提高利用的空闲时间。我们通过对纽约市现实世界数据集的广泛模拟研究评估了我们的方法。结果表明,就货币奖励功能而言,ITX的表现优于所有基线方法至少提高5%(相当于6,000个车辆操作的$ 70,000),该奖励奖励功能的建模旨在复制现实世界中乘车系统的盈利能力。此外,与基线方法相比,ITX可以将延迟至少减少4.68%,并且通常通过促进顾客在整个车队中更好地传播乘客的舒适度。我们的结果还表明,ITX使车辆能够在白天收获能量,稳定电池水平,并增加需求意外激增的弹性。最后,与表现最佳的基线策略相比,峰值负载减少了17.39%,这使网格操作员受益,并为更可持续的电网使用铺平了道路。
translated by 谷歌翻译
“轨迹”是指由地理空间中的移动物体产生的迹线,通常由一系列按时间顺序排列的点表示,其中每个点由地理空间坐标集和时间戳组成。位置感应和无线通信技术的快速进步使我们能够收集和存储大量的轨迹数据。因此,许多研究人员使用轨迹数据来分析各种移动物体的移动性。在本文中,我们专注于“城市车辆轨迹”,这是指城市交通网络中车辆的轨迹,我们专注于“城市车辆轨迹分析”。城市车辆轨迹分析提供了前所未有的机会,可以了解城市交通网络中的车辆运动模式,包括以用户为中心的旅行经验和系统范围的时空模式。城市车辆轨迹数据的时空特征在结构上相互关联,因此,许多先前的研究人员使用了各种方法来理解这种结构。特别是,由于其强大的函数近似和特征表示能力,深度学习模型是由于许多研究人员的注意。因此,本文的目的是开发基于深度学习的城市车辆轨迹分析模型,以更好地了解城市交通网络的移动模式。特别是,本文重点介绍了两项研究主题,具有很高的必要性,重要性和适用性:下一个位置预测,以及合成轨迹生成。在这项研究中,我们向城市车辆轨迹分析提供了各种新型模型,使用深度学习。
translated by 谷歌翻译
我们选择了48个欧洲城市,并以GTFS格式聚集了公共交通时间表。我们利用优步的H3空间指数将每个城市划分为六角形微区域。基于时间表数据,我们创建了某些功能,描述了每个区域中的公共交通可用性的数量和各种功能。接下来,我们培训了一个自动关联的深神经网络来嵌入每个区域。具有这样的准备的表示,我们使用分层聚类方法来识别类似地区。为此,我们利用了一个附着的聚类算法,在地区和病房的方法之间具有欧几里德距离,以最小化簇内方差。最后,我们在不同级别分析了所获得的集群,以确定定性描述公共交通可用性的一些群集。我们认为,我们的类型与分析的城市的特征匹配,并允许成功寻找具有相似公共交通计划特征的地区。
translated by 谷歌翻译
检测,预测和减轻交通拥堵是针对改善运输网络的服务水平的目标。随着对更高分辨率的更大数据集的访问,深度学习对这种任务的相关性正在增加。近年来几篇综合调查论文总结了运输领域的深度学习应用。然而,运输网络的系统动态在非拥挤状态和拥塞状态之间变化大大变化 - 从而需要清楚地了解对拥堵预测特异性特异性的挑战。在这项调查中,我们在与检测,预测和缓解拥堵相关的任务中,介绍了深度学习应用的当前状态。重复和非经常性充血是单独讨论的。我们的调查导致我们揭示了当前研究状态的固有挑战和差距。最后,我们向未来的研究方向提出了一些建议,因为所确定的挑战的答案。
translated by 谷歌翻译
在过去的五十年中,研究人员已经开发了设计和改进了应急响应管理(ERM)系统的统计,数据驱动,分析和算法方法。该问题已被认为是本质上的困难,并且构成了不确定性下的时空决策,这在文献中已经解决了不同的假设和方法。该调查提供了对这些方法的详细审查,重点关注有关四个子流程的关键挑战和问题:(a)事件预测,(b)入射检测,(c)资源分配,和(c)计算机辅助调度紧急响应。我们突出了该领域前后工作的优势和缺点,并探讨了不同建模范式之间的相似之处和差异。我们通过说明这种复杂领域未来研究的开放挑战和机会的结论。
translated by 谷歌翻译
在迅速增长的海上风电场市场中出现了增加风力涡轮机尺寸和距离的全球趋势。在英国,海上风电业于2019年生产了英国最多的电力,前一年增加了19.6%。目前,英国将进一步增加产量,旨在增加安装的涡轮机容量74.7%,如最近的冠村租赁轮次反映。通过如此巨大的增长,该部门现在正在寻求机器人和人工智能(RAI),以解决生命周期服务障碍,以支持可持续和有利可图的海上风能生产。如今,RAI应用主要用于支持运营和维护的短期目标。然而,前进,RAI在海上风基础设施的全部生命周期中有可能发挥关键作用,从测量,规划,设计,物流,运营支持,培训和退役。本文介绍了离岸可再生能源部门的RAI的第一个系统评论之一。在当前和未来的要求方面,在行业和学术界的离岸能源需求分析了rai的最先进的。我们的评论还包括对支持RAI的投资,监管和技能开发的详细评估。通过专利和学术出版数据库进行详细分析确定的关键趋势,提供了对安全合规性和可靠性的自主平台认证等障碍的见解,这是自主车队中可扩展性的数字架构,适应性居民运营和优化的适应性规划人机互动对人与自治助理的信赖伙伴关系。
translated by 谷歌翻译
如今,世界各地的城市推出了电动公共汽车以优化城市交通,减少当地碳排放量。为了减少碳排放并最大化电动公共汽车的效用,重要的是为它们选择合适的路线很重要。传统上,路线选择是在专用调查的基础上,这在时间和劳动力成本高昂。在本文中,我们主要关注智能规划电动公交线路,具体取决于整个城市各地区的独特需求。我们提出了一种铺张山庄,一个路线规划系统,利用深度神经网络和多层的感知者,以预测未来人民的旅行和整个城市的未来运输碳排放。鉴于人们旅行和运输碳排放的未来信息,我们利用了一种贪婪的机制来推荐将以理想状态离开的电动公交车的公交线路。此外,从异构城市数据集中提取两个神经网络的代表特征。我们通过对珠海省珠海真实世界资源的大量实验来评估我们的方法。结果表明,我们设计的基于神经网络的算法始终如一地优于典型的基线。此外,电动公交车的建议路线有助于降低碳排放的峰值,并充分利用城市的电动公共汽车。
translated by 谷歌翻译
规划自行车共享站的布局是一个复杂的过程,特别是在刚刚实施自行车共享系统的城市。城市规划者通常必须根据公开可用的数据并私下提供来自管理的数据,然后使用现场流行的位置分配模型。较小城市的许多城市可能难以招聘专家进行此类规划。本文提出了一种新的解决方案来简化和促进通过使用空间嵌入方法来实现这种规划的过程。仅基于来自OpenStreetMap的公开数据,以及来自欧洲34个城市的站布局,已经开发了一种使用优步H3离散全球电网系统将城市分成微区域的方法,并指示其值得放置站的区域在不同城市使用转移学习的现有系统。工作的结果是在规划驻地布局的决策中支持规划者的机制,以选择参考城市。
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new selfsupervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.
translated by 谷歌翻译
随着全球人口越来越多的人口驱动世界各地的快速城市化,有很大的需要蓄意审议值得生活的未来。特别是,随着现代智能城市拥抱越来越多的数据驱动的人工智能服务,值得记住技术可以促进繁荣,福祉,城市居住能力或社会正义,而是只有当它具有正确的模拟补充时(例如竭尽全力,成熟机构,负责任治理);这些智能城市的最终目标是促进和提高人类福利和社会繁荣。研究人员表明,各种技术商业模式和特征实际上可以有助于极端主义,极化,错误信息和互联网成瘾等社会问题。鉴于这些观察,解决了确保了诸如未来城市技术基岩的安全,安全和可解释性的哲学和道德问题,以为未来城市的技术基岩具有至关重要的。在全球范围内,有能够更加人性化和以人为本的技术。在本文中,我们分析和探索了在人以人为本的应用中成功部署AI的安全,鲁棒性,可解释性和道德(数据和算法)挑战的关键挑战,特别强调这些概念/挑战的融合。我们对这些关键挑战提供了对现有文献的详细审查,并分析了这些挑战中的一个可能导致他人的挑战方式或帮助解决其他挑战。本文还建议了这些域的当前限制,陷阱和未来研究方向,以及如何填补当前的空白并导致更好的解决方案。我们认为,这种严谨的分析将为域名的未来研究提供基准。
translated by 谷歌翻译
对于在极地冰条件下运行的试点的自主水下车辆(AUV)的需求越来越大。目前,AUVS从船舶部署,并直接在这些区域中驾驶,含有高碳成本并限制运营范围。长期自治任务的关键要求是一种远程路线规划能力,了解变化的冰条件。在本文中,我们解决了在南海运行的AUV自动化远程路线规划问题。我们介绍了路线规划方法和结果,表明可以计划高效,冰避免的长距离遍历。
translated by 谷歌翻译
在过去的十年中,自动驾驶航空运输车辆引起了重大兴趣。这是通过空中操纵器和新颖的握手的技术进步来实现这一目标的。此外,改进的控制方案和车辆动力学能够更好地对有效载荷进行建模和改进的感知算法,以检测无人机(UAV)环境中的关键特征。在这项调查中,对自动空中递送车辆的技术进步和开放研究问题进行了系统的审查。首先,详细讨论了各种类型的操纵器和握手,以及动态建模和控制方法。然后,讨论了降落在静态和动态平台上的。随后,诸如天气状况,州估计和避免碰撞之类的风险以确保安全过境。最后,调查了交付的UAV路由,该路由将主题分为两个领域:无人机操作和无人机合作操作。
translated by 谷歌翻译