机器学习已成功应用于系统应用程序(如内存预取和缓存),其中已知模型已显示出优于HeuRistics。然而,缺乏了解这些模型的内部工作 - 可解释性 - 仍然是在现实世界部署中采用的主要障碍。了解模型的行为可以帮助系统管理员,开发人员在模型中获得信心,了解生产中的风险和调试意外行为。计算机系统中使用的模型的可解释性构成了特定的挑战:与在图像或文本上培训的ML模型不同,输入域(例如,内存访问模式,程序计数器)不是立即解释的。因此,一项重大挑战是在对人类从业者达成的概念方面解释该模型。通过分析最先进的高速缓存模型,我们提供了证据表明该模型已经学习超出可以利用解释的简单统计数据的概念。我们的工作为系统ML模型的解读提供了第一步,并突出了这一新兴研究区域的承诺和挑战。
translated by 谷歌翻译
虽然离散事件模拟器是建筑研究,设计和开发的必备工具,但它们的实用性受到在调查下的现实应用的极长时间的影响。这项工作描述了一项协调一致的努力,其中机器学习(ML)用于加速离散事件仿真。首先,构建了用于静态指令属性和动态处理器状态的基于ML的指令延迟预测框架。然后,基于所提出的指令延迟预测器来实现GPU加速的并行模拟器,并且验证了其模拟精度和吞吐量并针对最先进的模拟器评估。利用现代GPU,基于ML的模拟器显着优于传统的模拟器。
translated by 谷歌翻译
In this work, we propose MUSTACHE, a new page cache replacement algorithm whose logic is learned from observed memory access requests rather than fixed like existing policies. We formulate the page request prediction problem as a categorical time series forecasting task. Then, our method queries the learned page request forecaster to obtain the next $k$ predicted page memory references to better approximate the optimal B\'el\'ady's replacement algorithm. We implement several forecasting techniques using advanced deep learning architectures and integrate the best-performing one into an existing open-source cache simulator. Experiments run on benchmark datasets show that MUSTACHE outperforms the best page replacement heuristic (i.e., exact LRU), improving the cache hit ratio by 1.9% and reducing the number of reads/writes required to handle cache misses by 18.4% and 10.3%.
translated by 谷歌翻译
大多数自动化软件测试任务可以从测试用例的抽象表示中受益。传统上,这是通过基于测试案例的代码覆盖范围来完成的。规范级别的标准可以替换代码覆盖范围以更好地表示测试用例的行为,但通常不具有成本效益。在本文中,我们假设测试用例的执行痕迹可以使其在自动测试任务中抽象其行为的好选择。我们提出了一种新颖的嵌入方法Test2VEC,该方法将测试执行映射到潜在空间。我们在测试案例的优先级(TP)任务中评估了此表示形式。我们的默认TP方法基于嵌入式向量与历史失败测试向量的相似性。我们还根据测试向量的多样性研究了一种替代方案。最后,我们提出了一种决定给定测试套件的方法,以决定选择哪种TP。该实验基于几个真实和种子故障,具有超过一百万个执行痕迹。结果表明,就第一个失败测试案例(FFR)的中位数等级而言,我们提议的TP将最佳替代品提高了41.80%。就中位数APFD和中位数归一化FFR而言,它的表现优于传统代码覆盖范围的方法25.05%和59.25%。
translated by 谷歌翻译
计算机架构和系统已优化了很长时间,以便高效执行机器学习(ML)模型。现在,是时候重新考虑ML和系统之间的关系,并让ML转换计算机架构和系统的设计方式。这有一个双重含义:改善设计师的生产力,以及完成良性周期。在这篇论文中,我们对应用ML进行计算机架构和系统设计的工作进行了全面的审查。首先,我们考虑ML技术在架构/系统设计中的典型作用,即快速预测建模或设计方法,我们执行高级分类学。然后,我们总结了通过ML技术解决的计算机架构/系统设计中的常见问题,并且所用典型的ML技术来解决它们中的每一个。除了在狭义中强调计算机架构外,我们采用数据中心可被认为是仓库规模计算机的概念;粗略的计算机系统中提供粗略讨论,例如代码生成和编译器;我们还注意ML技术如何帮助和改造设计自动化。我们进一步提供了对机会和潜在方向的未来愿景,并设想应用ML的计算机架构和系统将在社区中蓬勃发展。
translated by 谷歌翻译
通常,机器学习应用程序必须应对动态环境,其中数据以潜在无限长度和瞬态行为的连续数据流的形式收集。与传统(批量)数据挖掘相比,流处理算法对计算资源和对数据演进的适应性具有额外要求。它们必须逐步处理实例,因为数据的连续流量禁止存储多次通过的数据。合奏学习在这种情况下取​​得了显着的预测性能。实现为一组(几个)个别分类器,合奏是自然可用于任务并行性的。但是,用于捕获概念漂移的增量学习和动态数据结构增加了缓存未命中并阻碍了并行性的好处。本文提出了一种迷你批处理策略,可以改善多核环境中用于流挖掘的多个集合算法的内存访问局部性和性能。借助正式框架,我们证明迷你批量可以显着降低重用距离(以及缓存未命中的数量)。在六种不同的最先进的集合算法上应用四个基准数据集的六种不同特性的实验显示了8个核心处理器上高达5倍的加速。这些效益牺牲了预测性能的少量减少。
translated by 谷歌翻译
在本文中,我们试图通过引入深度学习模型的句法归纳偏见来建立两所学校之间的联系。我们提出了两个归纳偏见的家族,一个家庭用于选区结构,另一个用于依赖性结构。选区归纳偏见鼓励深度学习模型使用不同的单位(或神经元)分别处理长期和短期信息。这种分离为深度学习模型提供了一种方法,可以从顺序输入中构建潜在的层次表示形式,即更高级别的表示由高级表示形式组成,并且可以分解为一系列低级表示。例如,在不了解地面实际结构的情况下,我们提出的模型学会通过根据其句法结构组成变量和运算符的表示来处理逻辑表达。另一方面,依赖归纳偏置鼓励模型在输入序列中找到实体之间的潜在关系。对于自然语言,潜在关系通常被建模为一个定向依赖图,其中一个单词恰好具有一个父节点和零或几个孩子的节点。将此约束应用于类似变压器的模型之后,我们发现该模型能够诱导接近人类专家注释的有向图,并且在不同任务上也优于标准变压器模型。我们认为,这些实验结果为深度学习模型的未来发展展示了一个有趣的选择。
translated by 谷歌翻译
Current learning machines have successfully solved hard application problems, reaching high accuracy and displaying seemingly "intelligent" behavior. Here we apply recent techniques for explaining decisions of state-of-the-art learning machines and analyze various tasks from computer vision and arcade games. This showcases a spectrum of problem-solving behaviors ranging from naive and short-sighted, to wellinformed and strategic. We observe that standard performance evaluation metrics can be oblivious to distinguishing these diverse problem solving behaviors. Furthermore, we propose our semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines. This helps to assess whether a learned model indeed delivers reliably for the problem that it was conceived for. Furthermore, our work intends to add a voice of caution to the ongoing excitement about machine intelligence and pledges to evaluate and judge some of these recent successes in a more nuanced manner.
translated by 谷歌翻译
Graph processing applications are severely bottlenecked by memory system performance due to low data reuse and irregular memory accesses. While state-of-the-art prefetchers using Machine Learning (ML) have made great progress, they do not perform well on graph analytics applications due to phase transitions in the execution and irregular data access that is hard to predict. We propose MPGraph: a novel ML-based Prefetcher for Graph analytics. MPGraph makes three novel optimizations based on domain knowledge of graph analytics. It detects the transition of graph processing phases during execution using a novel soft detection technique, predicts memory accesses and pages using phase-specific multi-modality predictors, and prefetches using a novel chain spatio-temporal prefetching strategy. We evaluate our approach using three widely-used graph processing frameworks and a variety of graph datasets. Our approach achieves 34.17%-82.15% higher precision in phase transition detection than the KSWIN and decision tree baselines. Our predictors achieve 6.80%-16.02% higher F1-score for access prediction and 11.68%-15.41% higher accuracy-at-10 for page prediction compared with the baselines LSTM-based and vanilla attention-based models. Simulations show that MPGraph achieves on the average 87.16% (prefetch accuracy) and 73.29% (prefetch coverage), leading to 12.52%-21.23% IPC improvement. It outperforms the widely-used non-ML prefetcher BO by 7.58%-12.03%, and outperforms state-of-the-art ML-based prefetchers Voyager by 3.27%-4.42% and TransFetch by 3.73%-4.58% with respect to IPC improvement.
translated by 谷歌翻译
众所周知,端到端的神经NLP体系结构很难理解,这引起了近年来为解释性建模的许多努力。模型解释的基本原则是忠诚,即,解释应准确地代表模型预测背后的推理过程。这项调查首先讨论了忠诚的定义和评估及其对解释性的意义。然后,我们通过将方法分为五类来介绍忠实解释的最新进展:相似性方法,模型内部结构的分析,基于反向传播的方法,反事实干预和自我解释模型。每个类别将通过其代表性研究,优势和缺点来说明。最后,我们从它们的共同美德和局限性方面讨论了上述所有方法,并反思未来的工作方向忠实的解释性。对于有兴趣研究可解释性的研究人员,这项调查将为该领域提供可访问且全面的概述,为进一步探索提供基础。对于希望更好地了解自己的模型的用户,该调查将是一项介绍性手册,帮助选择最合适的解释方法。
translated by 谷歌翻译
我们介绍了一种新颖的方法来对计算机程序进行自动终止分析:我们使用神经网络来表示排名功能。排名函数映射程序状态为从下面界限并随着程序运行而减小的值;排名函数的存在证明了程序终止。我们从程序的采样执行轨迹训练神经网络,以使网络的输出沿轨迹降低;然后,我们使用符号推理正式验证其对所有可能执行的概括。通过肯定的答案,我们获得了该计划的正式终止证书,我们称之为神经排名函数。我们证明,由于神经网络代表非线性功能的能力,我们的方法成功地超过了最先进工具的程序。这包括在其循环条件和包括非线性表达式的程序中使用析取的程序。
translated by 谷歌翻译
Reinforcement Learning (RL) is a popular machine learning paradigm where intelligent agents interact with the environment to fulfill a long-term goal. Driven by the resurgence of deep learning, Deep RL (DRL) has witnessed great success over a wide spectrum of complex control tasks. Despite the encouraging results achieved, the deep neural network-based backbone is widely deemed as a black box that impedes practitioners to trust and employ trained agents in realistic scenarios where high security and reliability are essential. To alleviate this issue, a large volume of literature devoted to shedding light on the inner workings of the intelligent agents has been proposed, by constructing intrinsic interpretability or post-hoc explainability. In this survey, we provide a comprehensive review of existing works on eXplainable RL (XRL) and introduce a new taxonomy where prior works are clearly categorized into model-explaining, reward-explaining, state-explaining, and task-explaining methods. We also review and highlight RL methods that conversely leverage human knowledge to promote learning efficiency and performance of agents while this kind of method is often ignored in XRL field. Some challenges and opportunities in XRL are discussed. This survey intends to provide a high-level summarization of XRL and to motivate future research on more effective XRL solutions. Corresponding open source codes are collected and categorized at https://github.com/Plankson/awesome-explainable-reinforcement-learning.
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
在这项工作中,我们审查并评估了一个具有公开可用和广泛使用的数据集的深度学习知识追踪(DLKT)模型,以及学习编程的新型学生数据集。评估的DLKT模型已重新实现,用于评估先前报告的结果的可重复性和可复制性。我们测试在与模型的主要架构上独立于模型的比较模型中找到的不同输入和输出层变化,以及在某些研究中隐含地和明确地使用的不同最大尝试计数选项。几个指标用于反映评估知识追踪模型的质量。评估的知识追踪模型包括Vanilla-DKT,两个长短期内存深度知识跟踪(LSTM-DKT)变体,两个动态键值存储器网络(DKVMN)变体,以及自我细致的知识跟踪(SAKT)。我们评估Logistic回归,贝叶斯知识跟踪(BKT)和简单的非学习模型作为基准。我们的结果表明,DLKT模型一般优于非DLKT模型,DLKT模型之间的相对差异是微妙的,并且在数据集之间经常变化。我们的研究结果还表明,通常的纯模型,例如平均预测,比更复杂的知识追踪模型更好地表现出更好的性能,尤其是在准确性方面。此外,我们的公制和封路数据分析显示,用于选择最佳模型的度量标准对模型的性能有明显的影响,并且该度量选择可以影响模型排名。我们还研究了输入和输出层变化的影响,过滤出长期尝试序列,以及随机性和硬件等非模型属性。最后,我们讨论模型性能可重量和相关问题。我们的模型实现,评估代码和数据作为本工作的一部分发布。
translated by 谷歌翻译
工人花费大量时间学习如何做出正确的决定。但是,评估给定决策的功效可能很复杂 - 例如,决策结果通常是长期的,并且以复杂的方式与原始决策有关。令人惊讶的是,即使学习良好的决策策略很困难,它们通常可以以简单明了的形式表达。为了关注顺序决策,我们设计了一种新颖的机器学习算法,该算法能够从跟踪数据中提取“最佳实践”,并以可解释的“提示”的形式向人类传达其见解。我们的算法选择了最能弥合人类工人所采取的行动与最佳政策所采取的行动之间差距的提示,以说明行动对实现更高绩效的影响的方式。我们通过一系列参与者管理虚拟厨房的一系列随机对照实验来评估我们的方法。我们的实验表明,我们算法产生的提示可以显着改善相对于直观基准的人类性能。此外,我们讨论了许多经验见解,这些见解可以帮助告知针对人类界面的算法设计。例如,我们发现参与者不仅盲目地遵循我们的技巧的证据。相反,他们将他们与自己的经验结合在一起,以发现改善性能的其他策略。
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
背景:机器学习(ML)可以实现有效的自动测试生成。目的:我们表征了新兴研究,检查测试实践,研究人员目标,应用的ML技术,评估和挑战。方法:我们对97个出版物的样本进行系统文献综述。结果:ML生成系统,GUI,单位,性能和组合测试的输入或改善现有生成方法的性能。 ML还用于生成测试判决,基于属性的和预期的输出序列。经常基于神经网络和强化学习的监督学习通常是基于Q学习的 - 很普遍,并且某些出版物还采用了无监督或半监督的学习。使用传统的测试指标和与ML相关的指标(例如准确性)评估(半/非 - )监督方法,而经常使用与奖励功能相关的测试指标来评估强化学习。结论:工作到尽头表现出巨大的希望,但是在培训数据,再探术,可伸缩性,评估复杂性,所采用的ML算法以及如何应用 - 基准和可复制性方面存在公开挑战。我们的发现可以作为该领域研究人员的路线图和灵感。
translated by 谷歌翻译
“感应头”是注意力头,它实现了一种简单的算法来完成令牌序列,例如[a] [b] ... [a] - > [b]。在这项工作中,我们提供了一个假设的初步和间接证据,即诱导头可能构成大型大型变压器模型中所有“文本学习”中大多数的机制(即减少在增加代币指数时损失的损失)。我们发现,诱导头在与秘密学习能力突然急剧上的急剧上升的位置完全相同,这是训练损失的颠簸。我们提出了六种互补的证据,认为诱导头可能是任何大小的变压器模型中一般性内部学习的机理来源。对于仅关注的小型模型,我们提供了有力的因果证据。对于具有MLP的较大模型,我们提供相关证据。
translated by 谷歌翻译
程序的源代码不仅定义了其语义,还包含可以识别其作者的细微线索。几项研究表明,这些线索可以使用机器学习自动提取,并允许在数百名程序员中确定程序的作者。这种归因对反审查和隐私增强技术的开发商构成了重大威胁,因为它们变得可识别并可能受到起诉。对这种威胁的理想保护是源代码的匿名化。但是,到目前为止,尚未探索这种匿名化的理论和实际原则。在本文中,我们解决了这个问题,并为有关代码匿名化的推理开发了一个框架。我们证明,生成$ k $匿名程序的任务 - 一个不能归因于$ k $ author的程序 - 不可计算,因此是研究的终点。作为一种补救措施,我们介绍了一个轻松的概念,称为$ k $ uncrunclantity,这使我们能够衡量开发人员的保护。基于这个概念,我们在经验上研究了匿名化的候选技术,例如代码归一化,编码样式模仿和代码混淆。我们发现,当攻击者意识到匿名化时,这些技术都没有提供足够的保护。虽然我们引入了一种从代码中删除剩余线索的方法,但我们工作的主要结果是负面的:源代码的匿名化是一个困难而开放的问题。
translated by 谷歌翻译