现实世界网络经常具有侧面信息,可以帮助提高网络分析任务等群集的性能。尽管在过去十年中对网络聚类方法进行了大量的实证和理论研究,但侧面信息的附加值和用于在聚类算法中最佳地结合的方法的附加值相对较少理解。我们向群集网络提出了一种新的迭代算法,其中包含节点的侧面信息(以协调因子的形式)提出并表明我们的算法在上下文对称随机块模型下是最佳的。我们的算法可以应用于一般上下文随机块模型,并避免与先前提出的方法相比,避免了HyperParameter调整。我们在综合数据实验中确认我们的理论结果,其中我们的算法显着优于其他方法,并表明它也可以应用于签名的图表。最后,我们展示了我们对实际数据方法的实际兴趣。
translated by 谷歌翻译
随机奇异值分解(RSVD)是用于计算大型数据矩阵截断的SVD的一类计算算法。给定A $ n \ times n $对称矩阵$ \ mathbf {m} $,原型RSVD算法输出通过计算$ \ mathbf {m mathbf {m} $的$ k $引导singular vectors的近似m}^{g} \ mathbf {g} $;这里$ g \ geq 1 $是一个整数,$ \ mathbf {g} \ in \ mathbb {r}^{n \ times k} $是一个随机的高斯素描矩阵。在本文中,我们研究了一般的“信号加上噪声”框架下的RSVD的统计特性,即,观察到的矩阵$ \ hat {\ mathbf {m}} $被认为是某种真实但未知的加法扰动信号矩阵$ \ mathbf {m} $。我们首先得出$ \ ell_2 $(频谱规范)和$ \ ell_ {2 \ to \ infty} $(最大行行列$ \ ell_2 $ norm)$ \ hat {\ hat {\ Mathbf {M}} $和信号矩阵$ \ Mathbf {M} $的真实单数向量。这些上限取决于信噪比(SNR)和功率迭代$ g $的数量。观察到一个相变现象,其中较小的SNR需要较大的$ g $值以保证$ \ ell_2 $和$ \ ell_ {2 \ to \ fo \ infty} $ distances的收敛。我们还表明,每当噪声矩阵满足一定的痕量生长条件时,这些相变发生的$ g $的阈值都会很清晰。最后,我们得出了近似奇异向量的行波和近似矩阵的进入波动的正常近似。我们通过将RSVD的几乎最佳性能保证在应用于三个统计推断问题的情况下,即社区检测,矩阵完成和主要的组件分析,并使用缺失的数据来说明我们的理论结果。
translated by 谷歌翻译
本文研究了聚类基质值观测值的计算和统计限制。我们提出了一个低级别的混合模型(LRMM),该模型适用于经典的高斯混合模型(GMM)来处理基质值观测值,该观测值假设人口中心矩阵的低级别。通过集成Lloyd算法和低级近似值设计了一种计算有效的聚类方法。一旦定位良好,该算法将快速收敛并达到最小值最佳的指数型聚类错误率。同时,我们表明一种基于张量的光谱方法可提供良好的初始聚类。与GMM相当,最小值最佳聚类错误率是由分离强度(即种群中心矩阵之间的最小距离)决定的。通过利用低级度,提出的算法对分离强度的要求较弱。但是,与GMM不同,LRMM的统计难度和计算难度的特征是信号强度,即最小的人口中心矩阵的非零奇异值。提供了证据表明,即使信号强度不够强,即使分离强度很强,也没有多项式时间算法是一致的。在高斯以下噪声下进一步证明了我们低级劳埃德算法的性能。讨论了LRMM下估计和聚类之间的有趣差异。通过全面的仿真实验证实了低级劳埃德算法的优点。最后,我们的方法在现实世界数据集的文献中优于其他方法。
translated by 谷歌翻译
网络研究中最根本的问题之一是社区检测。随机块模型(SBM)是一种流行的模型,具有不同的估计方法,其社区检测一致性结果揭晓。但是,SBM受到强烈假设的限制:同一社区中的所有节点在随机上都是等效的,这可能不适合实际应用。我们引入了成对协变量调整后的随机块模型(PCABM),这是SBM的概括,该模型包含成对协变量信息。我们研究协变量和社区分配系数的最大似然估计。结果表明,在适当的稀疏条件下,协变量和社区分配的系数估计均一致。引入了带有调节的光谱聚类(SCWA),以有效地求解PCABM。在某些条件下,我们得出了SCWA下社区检测的错误限制,并表明它是社区检测一致的。此外,研究了模型的选择,并研究了成对协变量的特征选择,并提出了两种相应的算法。当可访问协变量信息时,PCABM与SBM或学位校正的随机块模型(DCBM)进行比较。
translated by 谷歌翻译
社区检测和正交组同步是科学和工程中各种重要应用的基本问题。在这项工作中,我们考虑了社区检测和正交组同步的联合问题,旨在恢复社区并同时执行同步。为此,我们提出了一种简单的算法,该算法由频谱分解步骤组成,然后是彼此枢转的QR分解(CPQR)。所提出的算法与数据点数线性有效且缩放。我们还利用最近开发的“休闲一淘汰”技术来建立近乎最佳保证,以确切地恢复集群成员资格,并稳定地恢复正交变换。数值实验证明了我们算法的效率和功效,并确认了我们的理论表征。
translated by 谷歌翻译
我们提出了对学度校正随机块模型(DCSBM)的合适性测试。该测试基于调整后的卡方统计量,用于测量$ n $多项式分布的组之间的平等性,该分布具有$ d_1,\ dots,d_n $观测值。在网络模型的背景下,多项式的数量($ n $)的数量比观测值数量($ d_i $)快得多,与节点$ i $的度相对应,因此设置偏离了经典的渐近学。我们表明,只要$ \ {d_i \} $的谐波平均值生长到无穷大,就可以使统计量在NULL下分配。顺序应用时,该测试也可以用于确定社区数量。该测试在邻接矩阵的压缩版本上进行操作,因此在学位上有条件,因此对大型稀疏网络具有高度可扩展性。我们结合了一个新颖的想法,即在测试$ K $社区时根据$(k+1)$ - 社区分配来压缩行。这种方法在不牺牲计算效率的情况下增加了顺序应用中的力量,我们证明了它在恢复社区数量方面的一致性。由于测试统计量不依赖于特定的替代方案,因此其效用超出了顺序测试,可用于同时测试DCSBM家族以外的各种替代方案。特别是,我们证明该测试与具有社区结构的潜在可变性网络模型的一般家庭一致。
translated by 谷歌翻译
本文研究了一般D-均匀的HyperGraph随机块模型(D-HSBM)中精确恢复的基本限制,其中n个节点被分配到具有相对大小的k差异群落中(p1,...,pk)。具有基数d的节点的每个子集都是独立生成的,作为订单-D超边,其一定概率取决于D节点所属的地面真相群落。目标是根据观察到的超图准确地恢复K隐藏的社区。我们表明存在一个尖锐的阈值,因此可以在阈值之上实现精确的恢复,而不可能在阈值以下(除了将精确指定的小参数制度之外)。该阈值是根据我们称为社区之间普遍的Chernoff-Hellinger分歧的数量来表示的。我们对该通用模型的结果恢复了标准SBM和D-HSBM的先前结果,其中两个对称群落作为特殊情况。在证明我们的可实现结果的途径中,我们开发了一种符合阈值的多项式两阶段算法。第一阶段采用某种超图光谱聚类方法来获得社区的粗略估计,第二阶段通过局部细化步骤单独完善每个节点,以确保精确恢复。
translated by 谷歌翻译
网络可能具有弱信号和严重程度的异质性,并且可能在一次出现时非常稀疏,但在另一个发生中非常致密。得分(Jin,2015)是最近网络社区检测的方法。它适应严重的程度异质性,并适应不同水平的稀疏性,但它对具有弱信号的网络的性能尚不清楚。在本文中,我们认为,在广泛的网络设置中,我们允许弱信号,严重程度异质性和广泛的网络稀疏性,得分实现了完善的聚类,并且在汉明集群中具有所谓的“指数率”错误。证据对网络邻接矩阵的领先特征向量进行了最新的进出方程。理论分析向我们保证,在弱信号设置中,得分继续运行,但它不排除分数可以进一步提高的可能性,以在实际应用中具有更好的性能,特别是对于具有弱信号的网络。作为纸张的第二份贡献,我们提出得分+作为改进的分数版本。我们调查了8个网络数据集的得分+,发现它优于几种代表性的方法。特别是,对于具有相对强烈的信号的6个数据集,得分+具有与得分相似的性能,但对于2个数据集(Simmons,Caltech)具有可能弱信号,得分+的误差率较低。得分+提出了几个变化以得分。我们使用理论和数值研究的混合物仔细解释每个变化的基本原理。
translated by 谷歌翻译
社区检测是网络科学中的一个基本问题。在本文中,我们考虑了从$ HyperGraph $ $ $ $ $ $ $ $ $ $ $ $ $ $ $(HSBM)中绘制的HyperGraphs中的社区检测,重点是精确的社区恢复。在整个超图未知的情况下,我们研究了多项式时间算法以进行社区检测的性能。取而代之的是,我们获得了$相似性$ $ $ $ $ $ $ w $,其中$ w_ {ij} $报告包含$ i $和$ j $的超补品的数量。在此信息模型下,Kim,Bandeira和Goemans [KBG18]确定了信息理论阈值,以进行精确恢复,并提出了他们认为是最佳的半决赛编程松弛。在本文中,我们确认了这个猜想。我们还表明,一种简单,高效的光谱算法是最佳的,将光谱算法作为选择方法。我们对光谱算法的分析至关重要地依赖于$ w $的特征向量上的强$ entrywise $界限。我们的边界灵感来自Abbe,Fan,Wang和Zhong [AFWZ20]的工作,他们开发了具有独立条目的对称矩阵的特征向量的进入界。尽管相似性矩阵的依赖性结构复杂,但我们证明了相似的入口保证。
translated by 谷歌翻译
本文研究了由$ N $-$ N $ TCONOR代表的非二进制对交互估计的社区成员资格,其值为$ \ MATHCAL S $的元素,其中$ N $是节点的数量和$ \ Mathcal S $是节点之间的成对交互的空间。作为信息理论基准,我们研究由非二进制随机块模型生成的数据集,并导致社区成员资格的基本信息标准作为$ n \ to \ idty $。应用程序的示例包括加权网络($ \ mathcal s = \ mathbb r $),链接标记的网络$(\ mathcal s = \ {0,1,1,\ dots,l \} $),多路复用网络$(\ mathcal s = \ {0,1 \} ^ m $)和时间网络($ \ mathcal s = \ {0,1 \} ^ t $)。对于时间互动,我们表明(i)即使是$ t $的少数增加也可能对社区成员的恢复产生了很大影响,(ii)即使对于非常稀疏的数据(例如\ in in inverly degress),甚至可能存在一致的恢复$ t $足够大。我们还提供了几种离线和在线的估计算法,它充分利用了观察到的数据的时间性。我们在数据稀疏性和可识别性的各种假设下分析所提出的估计算法的准确性。数值实验表明,即使是社区分配的初始估计(例如,盲目随机猜测)也会导致在少量迭代之后通过在线算法获得的高精度,并且在非常稀疏的方案中也是如此。
translated by 谷歌翻译
光谱聚类是网络中广泛使用的社区检测方法之一。然而,大型网络为其中的特征值分解带来了计算挑战。在本文中,我们研究了从统计角度使用随机草图算法的光谱聚类,在那里我们通常假设网络数据是从随机块模型生成的,这些模型不一定是完整等级的。为此,我们首先使用最近开发的草图算法来获得两个随机谱聚类算法,即基于随机投影和基于随机采样的光谱聚类。然后,我们在群体邻接矩阵的近似误差,错误分类误差和链路概率矩阵的估计误差方面研究得到的算法的理论界限。事实证明,在温和条件下,随机谱聚类算法导致与原始光谱聚类算法相同的理论界。我们还将结果扩展到校正的程度校正的随机块模型。数值实验支持我们的理论发现并显示随机化方法的效率。一个名为rclusct的新R包是开发的,并提供给公众。
translated by 谷歌翻译
定向网络出现在各种领域,例如生物学,社会学,生理学和计算机科学。在本文中,我们构建一种基于邻接矩阵的奇异分解的光谱聚类方法,以检测定向随机块模型(DISBM)中的群落。通过考虑稀疏性参数,在轻度条件下,我们显示所提出的方法可以始终如一地恢复隐藏的行和列社区以进行不同程度的缩放。通过考虑行和列节点的程度异质性,我们进一步修改了所提出的方法,并为导向度校正随机块模型(DIDCSBM)建立理论框架,并显示了这种情况的修改方法的一致性。我们在DIBM和DIDCSBM下的理论结果提供了一些特殊定向网络的一些创新,例如具有平衡集群的定向网络,具有相似程度的节点的定向网络,以及指导的ERD \“OS-R”enyi图。此外,理论上,理论Didcsbm下的结果与分数下的结果一致。
translated by 谷歌翻译
我们在非均匀超图随机块模型(HSBM)下的稀疏随机超图中的社区检测问题,是社区结构的随机网络的一般模型和高阶交互。当随机超图具有界定的预期度时,我们提供了一种频谱算法,该频谱算法输出分区,其中至少有$ \ gamma $分数正确分类,其中$ \ gamma \ in(0.5,1)$取决于信号 - 模型的噪声比(SNR)。当SNR随着顶点的数量转到无限的时,SNR慢慢地增长,我们的算法达到了弱的一致性,这改善了Ghoshdastidar和Dukkipati(2017)的上一个结果,用于非均匀的HSBMS。我们的谱算法由三个主要步骤组成:(1)HIFFEGE选择:选择某些尺寸的超高率,为诱导的子图像提供最大信噪比; (2)光谱分区:构造正则化邻接矩阵,并基于奇异向量获得近似分区; (3)纠正和合并:将超代表信息从邻接张于升级升级错误率保证。我们的算法的理论分析依赖于稀疏非均匀随机超图的邻接矩阵的浓度和正则化,这可以是独立的兴趣。
translated by 谷歌翻译
网络值时间序列是目前的网络数据的常见形式。然而,研究由网络价值随机过程产生的网络序列的总体行为相对较少。现有的大多数研究都集中在简单的设置上,其中网络在整个时间内是独立的(或有条件独立的),并且所有边缘在每个时间步骤均同步更新。在本文中,我们研究了聚集的邻接矩阵的浓度特性以及与懒惰网络值随机过程产生的网络序列相关的相应拉普拉斯矩阵,其中边缘异步不断地更新,并且每个边缘都遵循其懒惰的随机过程,以更新独立于其更新其他边缘。我们证明了这些集中度的有用性,从而证明了标准估计器在社区估计和变更点估计问题中的一致性。我们还进行了一项仿真研究,以证明懒惰参数的影响,该参数控制时间相关的程度,对社区和变化点估计的准确性。
translated by 谷歌翻译
Higher-order multiway data is ubiquitous in machine learning and statistics and often exhibits community-like structures, where each component (node) along each different mode has a community membership associated with it. In this paper we propose the tensor mixed-membership blockmodel, a generalization of the tensor blockmodel positing that memberships need not be discrete, but instead are convex combinations of latent communities. We establish the identifiability of our model and propose a computationally efficient estimation procedure based on the higher-order orthogonal iteration algorithm (HOOI) for tensor SVD composed with a simplex corner-finding algorithm. We then demonstrate the consistency of our estimation procedure by providing a per-node error bound, which showcases the effect of higher-order structures on estimation accuracy. To prove our consistency result, we develop the $\ell_{2,\infty}$ tensor perturbation bound for HOOI under independent, possibly heteroskedastic, subgaussian noise that may be of independent interest. Our analysis uses a novel leave-one-out construction for the iterates, and our bounds depend only on spectral properties of the underlying low-rank tensor under nearly optimal signal-to-noise ratio conditions such that tensor SVD is computationally feasible. Whereas other leave-one-out analyses typically focus on sequences constructed by analyzing the output of a given algorithm with a small part of the noise removed, our leave-one-out analysis constructions use both the previous iterates and the additional tensor structure to eliminate a potential additional source of error. Finally, we apply our methodology to real and simulated data, including applications to two flight datasets and a trade network dataset, demonstrating some effects not identifiable from the model with discrete community memberships.
translated by 谷歌翻译
K-Subspaces(KSS)方法是用于子空间聚类的K-均值方法的概括。在这项工作中,我们介绍了KSS的本地收敛分析和恢复保证,假设数据是由Smari-random的子空间模型生成的,其中$ n $点是从$ k \ ge 2 $重叠子空间随机采样的。我们表明,如果KSS方法的初始分配位于真实聚类的邻域内,则它以高等的速率收敛,并在$ \ theta(\ log \ log \ log n)$迭代中找到正确的群集。此外,我们提出了一种基于阈值的基于内部产品的光谱方法来初始化,并证明它在该社区中产生了一个点。我们还提出了研究方法的数值结果,以支持我们的理论发展。
translated by 谷歌翻译
我们调查与高斯的混合的数据分享共同但未知,潜在虐待协方差矩阵的数据。我们首先考虑具有两个等级大小的组件的高斯混合,并根据最大似然估计导出最大切割整数程序。当样品的数量在维度下线性增长时,我们证明其解决方案实现了最佳的错误分类率,直到对数因子。但是,解决最大切割问题似乎是在计算上棘手的。为了克服这一点,我们开发了一种高效的频谱算法,该算法达到最佳速率,但需要一种二次样本量。虽然这种样本复杂性比最大切割问题更差,但我们猜测没有多项式方法可以更好地执行。此外,我们收集了支持统计计算差距存在的数值和理论证据。最后,我们将MAX-CUT程序概括为$ k $ -means程序,该程序处理多组分混合物的可能性不平等。它享有相似的最优性保证,用于满足运输成本不平等的分布式的混合物,包括高斯和强烈的对数的分布。
translated by 谷歌翻译
我们在一般随机块模型下研究现实网络中的社区层次结构,其中连接概率在二叉树中构造。在这种模型中,标准递归双分区算法基于非通知图拉普拉斯的Fiedler向量将网络分成两个社区,并重复分割,直到停止规则指示不进一步的社区结构。我们在广泛的模型参数下证明了这种方法的强大一致性,它包括稀疏网络,节点度为$ O(\ log n)$。此外,与大多数现有工作不同,我们的理论涵盖了多尺度网络,其中连接概率可能因数量级而异,这包括一类实际相关但技术上挑战处理的重要阶段。最后,我们展示了我们对综合性数据和实际示例算法的表现。
translated by 谷歌翻译
Crowdsourcing system has emerged as an effective platform for labeling data with relatively low cost by using non-expert workers. Inferring correct labels from multiple noisy answers on data, however, has been a challenging problem, since the quality of the answers varies widely across tasks and workers. Many existing works have assumed that there is a fixed ordering of workers in terms of their skill levels, and focused on estimating worker skills to aggregate the answers from workers with different weights. In practice, however, the worker skill changes widely across tasks, especially when the tasks are heterogeneous. In this paper, we consider a new model, called $d$-type specialization model, in which each task and worker has its own (unknown) type and the reliability of each worker can vary in the type of a given task and that of a worker. We allow that the number $d$ of types can scale in the number of tasks. In this model, we characterize the optimal sample complexity to correctly infer the labels within any given accuracy, and propose label inference algorithms achieving the order-wise optimal limit even when the types of tasks or those of workers are unknown. We conduct experiments both on synthetic and real datasets, and show that our algorithm outperforms the existing algorithms developed based on more strict model assumptions.
translated by 谷歌翻译
我们研究了情节块MDP中模型估计和无奖励学习的问题。在这些MDP中,决策者可以访问少数潜在状态产生的丰富观察或上下文。我们首先对基于固定行为策略生成的数据估算潜在状态解码功能(从观测到潜在状态的映射)感兴趣。我们在估计此功能的错误率上得出了信息理论的下限,并提出了接近此基本限制的算法。反过来,我们的算法还提供了MDP的所有组件的估计值。然后,我们研究在无奖励框架中学习近乎最佳政策的问题。根据我们有效的模型估计算法,我们表明我们可以以最佳的速度推断出策略(随着收集样品的数量增长大)的最佳策略。有趣的是,我们的分析提供了必要和充分的条件,在这些条件下,利用块结构可以改善样本复杂性,以识别近乎最佳的策略。当满足这些条件时,Minimax无奖励设置中的样本复杂性将通过乘法因子$ n $提高,其中$ n $是可能的上下文数量。
translated by 谷歌翻译