本文介绍了在初始化和目标函数的神经网络之间``初始对齐'(inal''(inal)的概念。可以证明,如果网络和布尔目标函数没有明显的信息,则在具有归一化I.I.D的完全连接的网络上嘈杂的梯度下降。初始化不会在多项式时间内学习。因此,在体系结构设计中需要有关目标(由INAL测量)的一定程度的知识。这也为[AS20]中提出的开放问题提供了答案。结果基于在对称神经网络上的下降算法的较低限制,而没有明确了解目标函数以外的目标函数。
translated by 谷歌翻译
我们证明了通过通过嘈杂梯度下降(GD)训练的神经网络学习的计算限制。每当GD培训是模棱两可的(对于许多标准架构)时,我们的结果就适用,并量化架构和数据之间所需的对齐方式,以便GD学习。作为应用程序,(i)我们表征了完全连接的网络可以在二进制HyperCube和单位球体上弱的功能,这表明Depth-2与此任务的任何其他深度一样强大;(ii)我们将与潜在的低维结构[ABM22]学习的合并楼梯必需结果扩展到均值野外状态之外。我们的技术扩展到随机梯度下降(SGD),为此,我们基于加密假设,通过完全连接的网络来显示非平凡的硬度结果。
translated by 谷歌翻译
当我们扩大数据集,模型尺寸和培训时间时,深入学习方法的能力中存在越来越多的经验证据。尽管有一些关于这些资源如何调节统计能力的说法,但对它们对模型培训的计算问题的影响知之甚少。这项工作通过学习$ k $ -sparse $ n $ bits的镜头进行了探索,这是一个构成理论计算障碍的规范性问题。在这种情况下,我们发现神经网络在扩大数据集大小和运行时间时会表现出令人惊讶的相变。特别是,我们从经验上证明,通过标准培训,各种体系结构以$ n^{o(k)} $示例学习稀疏的平等,而损失(和错误)曲线在$ n^{o(k)}后突然下降。 $迭代。这些积极的结果几乎匹配已知的SQ下限,即使没有明确的稀疏性先验。我们通过理论分析阐明了这些现象的机制:我们发现性能的相变不到SGD“在黑暗中绊倒”,直到它找到了隐藏的特征集(自然算法也以$ n^中的方式运行{o(k)} $ time);取而代之的是,我们表明SGD逐渐扩大了人口梯度的傅立叶差距。
translated by 谷歌翻译
本文识别数据分布的结构属性,使得深神经网络能够分层学习。我们定义了在布尔超立方体上的功能的“楼梯”属性,该功能在沿着增加链的低阶傅里叶系数可达高阶傅里叶系数。我们证明了满足该属性的功能可以在多项式时间中使用常规神经网络上的分层随机坐标血液中学到多项式时间 - 一类网络架构和具有同质性属性的初始化。我们的分析表明,对于这种阶梯功能和神经网络,基于梯度的算法通过贪婪地组合沿网络深度的较低级别特征来了解高级功能。我们进一步回复了我们的理论结果,实验显示楼梯功能也是由具有随机梯度下降的更多标准Reset架构进行学习的。理论和实验结果都支持阶梯属性在理解基于梯度的学习的能力的情况下,与可以模仿最近所示的任何SQ或PAC算法的一般多项式网络相反,阶梯属性在理解普通网络上的能力相反。
translated by 谷歌翻译
The fundamental learning theory behind neural networks remains largely open. What classes of functions can neural networks actually learn? Why doesn't the trained network overfit when it is overparameterized?In this work, we prove that overparameterized neural networks can learn some notable concept classes, including two and three-layer networks with fewer parameters and smooth activations. Moreover, the learning can be simply done by SGD (stochastic gradient descent) or its variants in polynomial time using polynomially many samples. The sample complexity can also be almost independent of the number of parameters in the network.On the technique side, our analysis goes beyond the so-called NTK (neural tangent kernel) linearization of neural networks in prior works. We establish a new notion of quadratic approximation of the neural network (that can be viewed as a second-order variant of NTK), and connect it to the SGD theory of escaping saddle points.
translated by 谷歌翻译
深度分离结果提出了对深度神经网络过较浅的架构的好处的理论解释,建立前者具有卓越的近似能力。然而,没有已知的结果,其中更深的架构利用这种优势成为可提供的优化保证。我们证明,当数据由具有满足某些温和假设的径向对称的分布产生的数据时,梯度下降可以使用具有两层S形激活的深度2神经网络有效地学习球指示器功能,并且隐藏层固定在一起训练。由于众所周知,当使用用单层非线性的深度2网络(Safran和Shamir,2017)使用深度2网络时,球指示器难以近似于一定的重型分配,这建立了我们最好的知识,基于第一优化的分离结果,其中近似架构的近似效益在实践中可怕的。我们的证明技术依赖于随机特征方法,该方法减少了用单个神经元学习的问题,其中新工具需要在数据分布重尾时显示梯度下降的收敛。
translated by 谷歌翻译
对于某种缩放的随机梯度下降(SGD)的初始化,已经显示宽神经网络(NN)通过再现核Hilbert空间(RKHS)方法来近似近似。最近的实证工作表明,对于某些分类任务,RKHS方法可以替换NNS而无需大量的性能损失。另一方面,已知两层NNS编码比RKHS更丰富的平滑度等级,并且我们知道SGD培训的NN可提供的特殊示例可提供胜过RKHS。即使在宽网络限制中,这也是如此,对于初始化的不同缩放。我们如何调和上述索赔?任务是否优于RKHS?如果协变量近在各向同性,RKHS方法患有维度的诅咒,而NNS可以通过学习最佳的低维表示来克服它。在这里,我们表明,如果协变量显示与目标函数相同的低维结构,则这种维度的这种诅咒变得更温和,并且我们精确地表征了这个权衡。在这些结果上建立,我们提出了可以在早期工作中观察到的统一框架中捕获的尖刺协变量模型。我们假设这种潜伏的低维结构存在于图像分类中。我们通过表明训练分配的特定扰动降低了比NN更大的更显高度显着的训练方法的特定扰动来测试这些假设。
translated by 谷歌翻译
我们在高斯分布下使用Massart噪声与Massart噪声进行PAC学习半个空间的问题。在Massart模型中,允许对手将每个点$ \ mathbf {x} $的标签与未知概率$ \ eta(\ mathbf {x})\ leq \ eta $,用于某些参数$ \ eta \ [0,1 / 2] $。目标是找到一个假设$ \ mathrm {opt} + \ epsilon $的错误分类错误,其中$ \ mathrm {opt} $是目标半空间的错误。此前已经在两个假设下研究了这个问题:(i)目标半空间是同质的(即,分离超平面通过原点),并且(ii)参数$ \ eta $严格小于$ 1/2 $。在此工作之前,当除去这些假设中的任何一个时,不知道非增长的界限。我们研究了一般问题并建立以下内容:对于$ \ eta <1/2 $,我们为一般半个空间提供了一个学习算法,采用样本和计算复杂度$ d ^ {o_ {\ eta}(\ log(1 / \ gamma) )))}} \ mathrm {poly}(1 / \ epsilon)$,其中$ \ gamma = \ max \ {\ epsilon,\ min \ {\ mathbf {pr} [f(\ mathbf {x})= 1], \ mathbf {pr} [f(\ mathbf {x})= -1] \} \} $是目标半空间$ f $的偏差。现有的高效算法只能处理$ \ gamma = 1/2 $的特殊情况。有趣的是,我们建立了$ d ^ {\ oomega(\ log(\ log(\ log(\ log))}}的质量匹配的下限,而是任何统计查询(SQ)算法的复杂性。对于$ \ eta = 1/2 $,我们为一般半空间提供了一个学习算法,具有样本和计算复杂度$ o_ \ epsilon(1)d ^ {o(\ log(1 / epsilon))} $。即使对于均匀半空间的子类,这个结果也是新的;均匀Massart半个空间的现有算法为$ \ eta = 1/2 $提供可持续的保证。我们与D ^ {\ omega(\ log(\ log(\ log(\ log(\ epsilon))} $的近似匹配的sq下限补充了我们的上限,这甚至可以为同类半空间的特殊情况而保持。
translated by 谷歌翻译
高维统计数据的一个基本目标是检测或恢复嘈杂数据中隐藏的种植结构(例如低级别矩阵)。越来越多的工作研究低级多项式作为此类问题的计算模型的限制模型:在各种情况下,数据的低级多项式可以与最知名的多项式时间算法的统计性能相匹配。先前的工作已经研究了低度多项式的力量,以检测隐藏结构的存在。在这项工作中,我们将这些方法扩展到解决估计和恢复问题(而不是检测)。对于大量的“信号加噪声”问题,我们给出了一个用户友好的下限,以获得最佳的均衡误差。据我们所知,这些是建立相关检测问题的恢复问题低度硬度的第一个结果。作为应用,我们对种植的子静脉和种植的密集子图问题的低度最小平方误差进行了严格的特征,在两种情况下都解决了有关恢复的计算复杂性的开放问题(在低度框架中)。
translated by 谷歌翻译
我们研究神经网络表达能力的基本限制。给定两组$ f $,$ g $的实值函数,我们首先证明了$ f $中的功能的一般下限,可以在$ l^p(\ mu)$ norm中通过$ g中的功能近似$,对于任何$ p \ geq 1 $和任何概率度量$ \ mu $。下限取决于$ f $的包装数,$ f $的范围以及$ g $的脂肪震动尺寸。然后,我们实例化了$ g $对应于分段的馈电神经网络的情况,并详细描述了两组$ f $:h {\“ o} lder balls和多变量单调函数。除了匹配(已知或新的)上限与日志因素外,我们的下限还阐明了$ l^p $ Norm或SUP Norm中近似之间的相似性或差异,解决了Devore等人的开放问题(2021年))。我们的证明策略与SUP Norm案例不同,并使用了Mendelson(2002)的关键概率结果。
translated by 谷歌翻译
现代神经网络通常以强烈的过度构造状态运行:它们包含许多参数,即使实际标签被纯粹随机的标签代替,它们也可以插入训练集。尽管如此,他们在看不见的数据上达到了良好的预测错误:插值训练集并不会导致巨大的概括错误。此外,过度散色化似乎是有益的,因为它简化了优化景观。在这里,我们在神经切线(NT)制度中的两层神经网络的背景下研究这些现象。我们考虑了一个简单的数据模型,以及各向同性协变量的矢量,$ d $尺寸和$ n $隐藏的神经元。我们假设样本量$ n $和尺寸$ d $都很大,并且它们在多项式上相关。我们的第一个主要结果是对过份术的经验NT内核的特征结构的特征。这种表征意味着必然的表明,经验NT内核的最低特征值在$ ND \ gg n $后立即从零界限,因此网络可以在同一制度中精确插值任意标签。我们的第二个主要结果是对NT Ridge回归的概括误差的表征,包括特殊情况,最小值-ULL_2 $ NORD插值。我们证明,一旦$ nd \ gg n $,测试误差就会被内核岭回归之一相对于无限宽度内核而近似。多项式脊回归的误差依次近似后者,从而通过与激活函数的高度组件相关的“自我诱导的”项增加了正则化参数。多项式程度取决于样本量和尺寸(尤其是$ \ log n/\ log d $)。
translated by 谷歌翻译
我们在决策边界是一定规律的假设下,研究从无噪声训练样本的学习分类功能的问题。我们为这一估计问题建立了普遍的下限,对于连续决策边界的一般阶级。对于本地禁区的类别,我们发现最佳估计率基本上独立于底层维度,并且可以通过在适当类的深神经网络上通过经验风险最小化方法实现。这些结果基于$ l ^ 1 $和$ l ^ \ infty $ intty $ inthty $ off的禁区常规职能的新颖估计数。
translated by 谷歌翻译
尽管使用对抗性训练捍卫深度学习模型免受对抗性扰动的经验成功,但到目前为止,仍然不清楚对抗性扰动的存在背后的原则是什么,而对抗性培训对神经网络进行了什么来消除它们。在本文中,我们提出了一个称为特征纯化的原则,在其中,我们表明存在对抗性示例的原因之一是在神经网络的训练过程中,在隐藏的重量中积累了某些小型密集混合物;更重要的是,对抗训练的目标之一是去除此类混合物以净化隐藏的重量。我们介绍了CIFAR-10数据集上的两个实验,以说明这一原理,并且一个理论上的结果证明,对于某些自然分类任务,使用随机初始初始化的梯度下降训练具有RELU激活的两层神经网络确实满足了这一原理。从技术上讲,我们给出了我们最大程度的了解,第一个结果证明,以下两个可以同时保持使用RELU激活的神经网络。 (1)对原始数据的训练确实对某些半径的小对抗扰动确实不舒适。 (2)即使使用经验性扰动算法(例如FGM),实际上也可以证明对对抗相同半径的任何扰动也可以证明具有强大的良好性。最后,我们还证明了复杂性的下限,表明该网络的低复杂性模型,例如线性分类器,低度多项式或什至是神经切线核,无论使用哪种算法,都无法防御相同半径的扰动训练他们。
translated by 谷歌翻译
这项调查的目的是介绍对深神经网络的近似特性的解释性回顾。具体而言,我们旨在了解深神经网络如何以及为什么要优于其他经典线性和非线性近似方法。这项调查包括三章。在第1章中,我们回顾了深层网络及其组成非线性结构的关键思想和概念。我们通过在解决回归和分类问题时将其作为优化问题来形式化神经网络问题。我们简要讨论用于解决优化问题的随机梯度下降算法以及用于解决优化问题的后传播公式,并解决了与神经网络性能相关的一些问题,包括选择激活功能,成本功能,过度适应问题和正则化。在第2章中,我们将重点转移到神经网络的近似理论上。我们首先介绍多项式近似中的密度概念,尤其是研究实现连续函数的Stone-WeierStrass定理。然后,在线性近似的框架内,我们回顾了馈电网络的密度和收敛速率的一些经典结果,然后在近似Sobolev函数中进行有关深网络复杂性的最新发展。在第3章中,利用非线性近似理论,我们进一步详细介绍了深度和近似网络与其他经典非线性近似方法相比的近似优势。
translated by 谷歌翻译
我们为梯度下降提供了收敛分析,以解决高斯分布中不可知的问题。与研究零偏差的设置的先前工作不同,我们考虑了当relu函数的偏见非零时更具挑战性的情况。我们的主要结果确定,从随机初始化开始,从多项式迭代梯度下降输出中,具有很高的概率,与最佳relu函数的误差相比,可以实现竞争错误保证。我们还提供有限的样本保证,这些技术将其推广到高斯以外的更广泛的边际分布。
translated by 谷歌翻译
使用神经网络学习依赖于可代表功能的复杂性,但更重要的是,典型参数的特定分配与不同复杂度的功能。将激活区域的数量作为复杂性度量,最近的作品表明,深度释放网络的实际复杂性往往远远远非理论最大值。在这项工作中,我们表明这种现象也发生在具有颤扬(多参数)激活功能的网络中,并且在考虑分类任务中的决策边界时。我们还表明参数空间具有多维全维区域,具有广泛不同的复杂性,并在预期的复杂性上获得非竞争下限。最后,我们调查了不同的参数初始化程序,并表明他们可以提高培训的收敛速度。
translated by 谷歌翻译
我们研究了$ \ Mathcal {r} $的结构和统计属性 - 规范最小化由特定目标函数标记的数据集的内侧插值。$ \ MATHCAL {R} $ - 标准是两层神经网络的电感偏差的基础,最近引入了捕获网络权重大小的功能效果,与网络宽度无关。我们发现,即使有适合数据的脊函数,这些插值也是本质上的多元功能,而且$ \ Mathcal {r} $ - 规范归纳偏见不足以实现某些学习问题的统计上最佳概括。总的来说,这些结果为与实际神经网络训练有关的感应偏见提供了新的启示。
translated by 谷歌翻译
对于由缺陷线性回归中的标签噪声引起的预期平均平方概率,我们证明了无渐近分布的下限。我们的下部结合概括了过度公共数据(内插)制度的类似已知结果。与最先前的作品相比,我们的分析适用于广泛的输入分布,几乎肯定的全排列功能矩阵,允许我们涵盖各种类型的确定性或随机特征映射。我们的下限是渐近的锐利,暗示在存在标签噪声时,缺陷的线性回归不会在任何这些特征映射中围绕内插阈值进行良好的。我们详细分析了强加的假设,并为分析(随机)特征映射提供了理论。使用此理论,我们可以表明我们的假设对于具有(Lebesgue)密度的输入分布以及随机深神经网络给出的特征映射,具有Sigmoid,Tanh,SoftPlus或Gelu等分析激活功能。作为进一步的例子,我们示出了来自随机傅里叶特征和多项式内核的特征映射也满足我们的假设。通过进一步的实验和分析结果,我们补充了我们的理论。
translated by 谷歌翻译
我们研究了小组测试问题,其目标是根据合并测试的结果,确定一组k感染的人,这些k含有稀有疾病,这些人在经过测试中至少有一个受感染的个体时返回阳性的结果。团体。我们考虑将个人分配给测试的两个不同的简单随机过程:恒定柱设计和伯努利设计。我们的第一组结果涉及基本统计限制。对于恒定柱设计,我们给出了一个新的信息理论下限,这意味着正确识别的感染者的比例在测试数量越过特定阈值时会经历急剧的“全或全或无所不包”的相变。对于Bernoulli设计,我们确定解决相关检测问题所需的确切测试数量(目的是区分小组测试实例和纯噪声),改善Truong,Aldridge和Scarlett的上限和下限(2020)。对于两个小组测试模型,我们还研究了计算有效(多项式时间)推理程序的能力。我们确定了解决检测问题的低度多项式算法所需的精确测试数量。这为在少量稀疏度的检测和恢复问题中都存在固有的计算统计差距提供了证据。值得注意的是,我们的证据与Iliopoulos和Zadik(2021)相反,后者预测了Bernoulli设计中没有计算统计差距。
translated by 谷歌翻译
通过建立神经网络和内核方法之间的联系,无限宽度极限阐明了深度学习的概括和优化方面。尽管它们的重要性,但这些内核方法的实用性在大规模学习设置中受到限制,因为它们(超)二次运行时和内存复杂性。此外,大多数先前关于神经内核的作品都集中在relu激活上,这主要是由于其受欢迎程度,但这也是由于很难计算此类内核来进行一般激活。在这项工作中,我们通过提供进行一般激活的方法来克服此类困难。首先,我们编译和扩展激活功能的列表,该函数允许精确的双重激活表达式计算神经内核。当确切的计算未知时,我们提出有效近似它们的方法。我们提出了一种快速的素描方法,该方法近似于任何多种多层神经网络高斯过程(NNGP)内核和神经切线核(NTK)矩阵,以实现广泛的激活功能,这超出了常见的经过分析的RELU激活。这是通过显示如何使用任何所需激活函​​数的截短的Hermite膨胀来近似神经内核来完成的。虽然大多数先前的工作都需要单位球体上的数据点,但我们的方法不受此类限制的影响,并且适用于$ \ Mathbb {r}^d $中的任何点数据集。此外,我们为NNGP和NTK矩阵提供了一个子空间嵌入,具有接近输入的距离运行时和接近最佳的目标尺寸,该目标尺寸适用于任何\ EMPH {均质}双重激活功能,具有快速收敛的Taylor膨胀。从经验上讲,关于精确的卷积NTK(CNTK)计算,我们的方法可实现$ 106 \ times $速度,用于在CIFAR-10数据集上的5层默特网络的近似CNTK。
translated by 谷歌翻译