避免碰撞需要在计划时间范围内进行权衡。根据规划师的不同,在给定地图更新的情况下,不能总是在不确定的环境中保证安全性。为了减轻策划者将车辆带到碰撞状态或车辆到达不可行的点的情况,我们提出了连续的碰撞检查算法。迫在眉睫的碰撞检查系统不断监视车辆的安全性,并计划了一个安全的轨迹,该轨迹将车辆带到观察到的地图内停止。我们在现实生活实验中以及模拟的随机堡垒和仓库环境中测试了我们提出的管道,并在现实生活实验中测试了我们的管道,我们证明,通过我们的方法,我们能够以至少90 \%的成功率来减轻碰撞。
translated by 谷歌翻译
By utilizing only depth information, the paper introduces a novel but efficient local planning approach that enhances not only computational efficiency but also planning performances for memoryless local planners. The sampling is first proposed to be based on the depth data which can identify and eliminate a specific type of in-collision trajectories in the sampled motion primitive library. More specifically, all the obscured primitives' endpoints are found through querying the depth values and excluded from the sampled set, which can significantly reduce the computational workload required in collision checking. On the other hand, we furthermore propose a steering mechanism also based on the depth information to effectively prevent an autonomous vehicle from getting stuck when facing a large convex obstacle, providing a higher level of autonomy for a planning system. Our steering technique is theoretically proved to be complete in scenarios of convex obstacles. To evaluate effectiveness of the proposed DEpth based both Sampling and Steering (DESS) methods, we implemented them in the synthetic environments where a quadrotor was simulated flying through a cluttered region with multiple size-different obstacles. The obtained results demonstrate that the proposed approach can considerably decrease computing time in local planners, where more trajectories can be evaluated while the best path with much lower cost can be found. More importantly, the success rates calculated by the fact that the robot successfully navigated to the destinations in different testing scenarios are always higher than 99.6% on average.
translated by 谷歌翻译
视觉惯性进程(VIO)被广泛用于多次计算机的状态估计,但在很少的视觉特征或过度攻击性飞行中的环境中起作用可能很差。在这项工作中,我们建议使用任何基于功能的VIO算法使用的多杆避免感知碰撞轨迹轨迹计划器。我们的方法能够以快速的速度飞行车辆到达目标位置,从而避免在未知的固定环境中遇到障碍,同时达到良好的VIO状态估计精度。拟议的规划师样本了一组最小的混蛋轨迹,并发现其中无冲突的轨迹,然后根据其目标和感知质量对其进行评估。特征及其位置的运动模糊都是为了感知质量。我们对功能运动模糊的新颖考虑使轨迹在具有不同光级别的环境下的侵略性自动适应。评估中的最佳轨迹是由车辆跟踪的,当从相机中收到新图像时,将以退缩的方式更新。仅对VIO做出了通用假设,因此计划器可以与各种现有系统一起使用。提出的方法可以在船上的小型嵌入式计算机上实时运行。我们通过在室内和室外环境中进行实验验证了我们提出的方法的有效性。与感知不可或缺的策划者相比,提议的计划者在摄像机的视野中保留了更多功能,并使飞行变得不那么侵略性,从而使VIO更加准确。它还减少了VIO失败,这是对感知态度计划者的发生,但并非针对拟议的计划者。还验证了拟议的规划师飞越密集障碍的能力。可以在https://youtu.be/qo3lzirpwtq上找到实验视频。
translated by 谷歌翻译
本文介绍了一个新的在线多代理轨迹规划算法,可确保在杂乱的环境中产生安全,动态可行的轨迹。所提出的算法利用线性安全走廊(LSC)来制定分布式轨迹优化问题,只有可行的约束,因此它不采用松弛变量或软限制以避免优化失败。我们采用基于优先的目标规划方法来防止僵局而无需额外的程序来确定要屈服的机器人。所提出的算法可以平均将60个代理的轨迹平均每代理使用英特尔I7笔记本电脑计算60个代理,并与基于软限制的基线相比,显示了类似的飞行距离和距离。我们核实所提出的方法可以在随机森林和室内空间中没有僵局达到目标,并且我们通过在迷宫状环境中使用10个时段的真正飞行试验验证了所提出的算法的安全性和可操作性。
translated by 谷歌翻译
导航动态环境要求机器人生成无碰撞的轨迹,并积极避免移动障碍。大多数以前的作品都基于一个单个地图表示形式(例如几何,占用率或ESDF地图)设计路径计划算法。尽管他们在静态环境中表现出成功,但由于地图表示的限制,这些方法无法同时可靠地处理静态和动态障碍。为了解决该问题,本文提出了一种利用机器人在板载视觉的基于梯度的B-Spline轨迹优化算法。深度视觉使机器人能够基于体素图以几何形式跟踪和表示动态对象。拟议的优化首先采用基于圆的指南算法,以近似避免静态障碍的成本和梯度。然后,使用视觉检测的移动对象,我们的后水平距离场同时用于防止动态碰撞。最后,采用迭代重新指导策略来生成无碰撞轨迹。仿真和物理实验证明,我们的方法可以实时运行以安全地导航动态环境。
translated by 谷歌翻译
最近的研究通过使用直接非线性模型预测控制(NMPC),使固定翼无人驾驶飞行器(无人机)能够在受约束空间中操纵。然而,这种方法仅限于先验的已知地图和地面真理状态测量。在本文中,我们介绍了一种直接的NMPC方法,它利用Nanomap,一种光重点云映射框架,用于使用车载立体视觉产生自由的轨迹。我们首先探讨了我们在模拟中的方法,并证明我们的算法足以使城市环境中的视觉导航。然后,我们使用42英寸的固定翼UAV在硬件中展示我们的方法,并显示我们的运动规划算法能够使用一组简约的目标点围绕建筑物导航。我们还显示存储点云历史,对于导航这些类型的约束环境非常重要。
translated by 谷歌翻译
Motion planning is challenging for autonomous systems in multi-obstacle environments due to nonconvex collision avoidance constraints. Directly applying numerical solvers to these nonconvex formulations fails to exploit the constraint structures, resulting in excessive computation time. In this paper, we present an accelerated collision-free motion planner, namely regularized dual alternating direction method of multipliers (RDADMM or RDA for short), for the model predictive control (MPC) based motion planning problem. The proposed RDA addresses nonconvex motion planning via solving a smooth biconvex reformulation via duality and allows the collision avoidance constraints to be computed in parallel for each obstacle to reduce computation time significantly. We validate the performance of the RDA planner through path-tracking experiments with car-like robots in simulation and real world setting. Experimental results show that the proposed methods can generate smooth collision-free trajectories with less computation time compared with other benchmarks and perform robustly in cluttered environments.
translated by 谷歌翻译
微型航空车(MAV)具有很高的信息收集任务的潜力,以支持搜索和救援方案中的情况意识。在这种情况下,手动控制MAV需要经验丰富的飞行员,并且容易出错,尤其是在真正紧急情况的压力下。灾难情景的条件对于自动MAV系统也充满挑战。通常不知道环境,GNSS可能并不总是可用。我们介绍了一个不依赖全球定位系统的未知环境中自动MAV航班的系统。该方法在多个搜索和救援方案中进行评估,即使在室内和室外区域之间过渡时,也可以进行安全的自动飞行。
translated by 谷歌翻译
四型是敏捷平台。对于人类专家,他们可以在混乱的环境中进行极高的高速航班。但是,高速自主飞行仍然是一个重大挑战。在这项工作中,我们提出了一种基于走廊约束的最小控制工作轨迹优化(MINCO)框架的运动计划算法。具体而言,我们使用一系列重叠球来表示环境的自由空间,并提出了两种新型设计,使算法能够实时计划高速四轨轨迹。一种是一种基于采样的走廊生成方法,该方法在两个相邻球之间生成具有大型重叠区域(因此总走廊大小)的球体。第二个是一个后退的地平线走廊(RHC)策略,其中部分生成的走廊在每个补给中都重复使用。这两种设计一起,根据四极管的当前状态扩大走廊的空间,因此使四极管可以高速操纵。我们根据其他最先进的计划方法基准了我们的算法,以显示其在模拟中的优势。还进行了全面的消融研究,以显示这两种设计的必要性。最终在木材环境中对自动激光雷达四型二次无人机进行了评估,该方法的飞行速度超过13.7 m/s,而没有任何先前的环境或外部定位设施图。
translated by 谷歌翻译
到达状态的密度可以帮助理解安全至关重要的系统的风险,尤其是在最坏情况下的情况过于保守的情况下。最近的工作提供了一种数据驱动的方法来计算自主系统在线前进状态的密度分布。在本文中,我们研究了这种方法与模型预测控制在不确定性下的可验证安全路径计划的结合。我们首先使用学习的密度分布来计算在线碰撞的风险。如果这种风险超过可接受的阈值,我们的方法将计划在先前轨迹周围采取新的途径,并在阈值以下碰撞风险。我们的方法非常适合处理具有不确定性和复杂动力学的系统,因为我们的数据驱动方法不需要系统动力学的分析形式,并且可以通过不确定性的任意初始分布来估算正向状态密度。我们设计了两个具有挑战性的场景(自动驾驶和气垫船控制),以在系统不确定性下的障碍物中进行安全运动计划。我们首先表明我们的密度估计方法可以达到与基于蒙特卡洛的方法相似的准确性,同时仅使用0.01倍训练样本。通过利用估计的风险,我们的算法在执行超过0.99的安全速率时达到目标达到最高成功率。
translated by 谷歌翻译
本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译
近年来,无人驾驶汽车(UAV)用于众多检查和视频捕获任务。但是,在障碍附近手动控制无人机是具有挑战性的,并且构成了高风险。即使对于自动飞行,全球导航计划也可能太慢,无法应对新感知的障碍。诸如风之类的干扰可能会导致与计划中的轨迹偏离。在这项工作中,我们提出了一种快速的预测障碍方法,该方法不取决于更高级别的本地化或映射,并保持无人机的动态飞行功能。它直接在LIDAR范围内实时运行,并通过计算范围图像内的角电位字段来调整当前飞行方向。随后根据轨迹预测和接触时间估计来确定速度幅度。使用硬件式模拟评估我们的方法。它可以使无人机保持安全距离,同时允许比以前直接在传感器数据上运行的反应性障碍物方法更高的飞行速度。
translated by 谷歌翻译
Despite recent progress on trajectory planning of multiple robots and path planning of a single tethered robot, planning of multiple tethered robots to reach their individual targets without entanglements remains a challenging problem. In this paper, we present a complete approach to address this problem. Firstly, we propose a multi-robot tether-aware representation of homotopy, using which we can efficiently evaluate the feasibility and safety of a potential path in terms of (1) the cable length required to reach a target following the path, and (2) the risk of entanglements with the cables of other robots. Then, the proposed representation is applied in a decentralized and online planning framework that includes a graph-based kinodynamic trajectory finder and an optimization-based trajectory refinement, to generate entanglement-free, collision-free and dynamically feasible trajectories. The efficiency of the proposed homotopy representation is compared against existing single and multiple tethered robot planning approaches. Simulations with up to 8 UAVs show the effectiveness of the approach in entanglement prevention and its real-time capabilities. Flight experiments using 3 tethered UAVs verify the practicality of the presented approach.
translated by 谷歌翻译
陆地 - 空中双模车辆在学术界和工业中绽放,因为它们融入了空中车辆的高流动性和地面车辆的长期耐力。在这项工作中,我们提出了一种自主和自适应的导航框架,为这类车辆带来完全自主权。该框架主要包括1)分层运动规划器,在未知环境中产生安全和低功率的地面 - 鸟轨迹,2)统一运动控制器,其动态地调整陆地运动中的能量消耗。广泛的现实实验和基准比较是在定制的机器人平台上进行的,以验证所提出的框架的稳健性和性能。在测试期间,机器人安全地穿越了陆地集成流动性的复杂环境,并在地面运动中实现了7美元的节能。最后,我们将为社区的引用发出我们的代码和硬件配置。
translated by 谷歌翻译
This paper presents a two-step algorithm for online trajectory planning in indoor environments with unknown obstacles. In the first step, sampling-based path planning techniques such as the optimal Rapidly exploring Random Tree (RRT*) algorithm and the Line-of-Sight (LOS) algorithm are employed to generate a collision-free path consisting of multiple waypoints. Then, in the second step, constrained quadratic programming is utilized to compute a smooth trajectory that passes through all computed waypoints. The main contribution of this work is the development of a flexible trajectory planning framework that can detect changes in the environment, such as new obstacles, and compute alternative trajectories in real time. The proposed algorithm actively considers all changes in the environment and performs the replanning process only on waypoints that are occupied by new obstacles. This helps to reduce the computation time and realize the proposed approach in real time. The feasibility of the proposed algorithm is evaluated using the Intel Aero Ready-to-Fly (RTF) quadcopter in simulation and in a real-world experiment.
translated by 谷歌翻译
我们解决了在存在障碍物的情况下,通过一系列航路点来解决四肢飞行的最低时间飞行问题,同时利用了完整的四型动力学。早期作品依赖于简化的动力学或多项式轨迹表示,而这些动力学或多项式轨迹表示,这些表示没有利用四四光的全部执行器电位,因此导致了次优溶液。最近的作品可以计划最小的时间轨迹;然而,轨迹是通过无法解释障碍的控制方法执行的。因此,由于模型不匹配和机上干扰,成功执行此类轨迹很容易出现错误。为此,我们利用深厚的强化学习和经典的拓扑路径计划来训练强大的神经网络控制器,以在混乱的环境中为最少的四型四型飞行。由此产生的神经网络控制器表现出比最新方法相比,高达19%的性能要高得多。更重要的是,博学的政策同时在线解决了计划和控制问题,以解决干扰,从而实现更高的鲁棒性。因此,提出的方法在没有碰撞的情况下实现了100%的最低时间策略的成功率,而传统的计划和控制方法仅获得40%。所提出的方法在模拟和现实世界中均已验证,四速速度高达42公里/小时,加速度为3.6g。
translated by 谷歌翻译
本文介绍了一种新的方法,为入境驾驶场景的自动车辆产生最佳轨迹。该方法使用两相优化过程计算轨迹。在第一阶段中,优化过程产生具有不同的曲率的闭形驾驶导向线。在第二阶段,该过程将驱动导向线作为输入输出,输出沿着导向线驾驶的车辆的动态可行,混蛋和时间最佳轨迹。该方法对于在弯曲道路上产生轨迹特别有用,其中车辆需要频繁加速和减速以适应离心机加速限制。
translated by 谷歌翻译
本文提出了一种有效且安全的方法,可以避免基于LiDAR的静态和动态障碍。首先,点云用于生成实时的本地网格映射以进行障碍物检测。然后,障碍物由DBSCAN算法聚集,并用最小边界椭圆(MBE)包围。此外,进行数据关联是为了使每个MBE与当前帧中的障碍匹配。考虑到MBE作为观察,Kalman滤波器(KF)用于估计和预测障碍物的运动状态。通过这种方式,可以将远期时间域中每个障碍物的轨迹作为一组椭圆化。由于MBE的不确定性,参数化椭圆形的半肢和半尺寸轴被扩展以确保安全性。我们扩展了传统的控制屏障功能(CBF),并提出动态控制屏障功能(D-CBF)。我们将D-CBF与模型预测控制(MPC)结合起来,以实施安全至关重要的动态障碍。进行了模拟和实际场景中的实验,以验证我们算法的有效性。源代码发布以供社区参考。
translated by 谷歌翻译
在本文中,提出了针对遥控道路车辆的转向动作自适应巡航控制方法(ACC)。为了使车辆保持安全状态,ACC方法可以覆盖人类操作员的速度控制命令。安全状态被定义为可以安全停止车辆的状态,无论操作员采用哪种转向措施。这是通过首先采样各种潜在的未来轨迹来实现的。在第二阶段,假设风险最高的轨迹,则优化了安全舒适的速度轮廓。这为车辆提供了安全的速度控制命令。在模拟中,将方法的特性与能够覆盖指挥转向角度和速度的模型预测控制方法进行比较。此外,在使用1:10尺度的车辆测试的远程运输实验中,即使操作员的控制命令会导致碰撞,提议的ACC方法也可以确保车辆的安全。
translated by 谷歌翻译
由于多重冲突目标和非凸起约束上升的数值问题,快速生成无人机的最佳追逐动态,以遵循障碍物之间的动态目标是挑战。本研究建议解决具有融合的快速可靠的管道的困难,该管道包含1)目标运动预测和2)追逐计划者。它们基于采样和检查方法,包括生成高质量候选基元和具有光计算负荷的可行性测试。我们通过选择由过去观察构建的一组候选者中选择最佳预测来预测目标的运动。基于预测,我们构建了一组预期追逐轨迹,其减少了高阶导数,同时从预测的目标运动保持所需的相对距离。然后,候选轨迹在追逐者的安全性和朝向目标的可视性上进行测试,而不会逼近约束。在涉及动态障碍的具有挑战性的情况下,彻底评估了所提出的算法。此外,从目标识别到追逐运动规划的整体过程在无人机上完全实施,展示了现实世界的适用性。
translated by 谷歌翻译