来自计算机断层扫描血管造影(CTA)的肾脏结构分割对于许多计算机辅助的肾脏癌治疗应用至关重要。肾脏解析〜(KIPA 2022)挑战旨在建立细粒度的多结构数据集并改善多个肾脏结构的分割。最近,U-NET主导了医疗图像分割。在KIPA挑战中,我们评估了几个U-NET变体,并选择了最终提交的最佳模型。
translated by 谷歌翻译
U-Net and its extensions have achieved great success in medical image segmentation. However, due to the inherent local characteristics of ordinary convolution operations, U-Net encoder cannot effectively extract global context information. In addition, simple skip connections cannot capture salient features. In this work, we propose a fully convolutional segmentation network (CMU-Net) which incorporates hybrid convolutions and multi-scale attention gate. The ConvMixer module extracts global context information by mixing features at distant spatial locations. Moreover, the multi-scale attention gate emphasizes valuable features and achieves efficient skip connections. We evaluate the proposed method using both breast ultrasound datasets and a thyroid ultrasound image dataset; and CMU-Net achieves average Intersection over Union (IoU) values of 73.27% and 84.75%, and F1 scores of 84.81% and 91.71%. The code is available at https://github.com/FengheTan9/CMU-Net.
translated by 谷歌翻译
来自3D CTA的多结构(即肾脏,肾脏,动脉和静脉)的准确和自动分割是基于手术的肾脏癌治疗的最重要任务之一(例如,腹腔镜部分肾切除术)。本文简要介绍了MICCAI 2022 KIPA挑战中多结构SEG-Interation方法的主要技术细节。本文的主要贡献是,我们设计具有大量上下文信息限制功能的3D UNET。我们的方法在MICCAI 2022 KIPA CHAL-LENGE开放测试数据集上排名第八,平均位置为8.2。我们的代码和训练有素的模型可在https://github.com/fengjiejiejiejie/kipa22_nnunet上公开获得。
translated by 谷歌翻译
肾脏结构细分是计算机辅助诊断基于手术的肾癌的至关重要但具有挑战性的任务。尽管许多深度学习模型在许多医学图像分割任务中取得了显着的成功,但由于肾脏肿瘤的尺寸可变,肾脏肿瘤及其周围环境之间的歧义范围可变,因此对计算机层析造影血管造影(CTA)图像的肾脏结构的准确分割仍然具有挑战性。 。在本文中,我们在CTA扫描中提出了一个边界感知网络(BA-NET),以分段肾脏,肾脏肿瘤,动脉和静脉。该模型包含共享编码器,边界解码器和分割解码器。两个解码器都采用了多尺度的深度监督策略,这可以减轻肿瘤大小可变的问题。边界解码器在每个量表上产生的边界概率图被用作提高分割特征图的注意。我们在肾脏解析(KIPA)挑战数据集上评估了BA-NET,并通过使用4倍的交叉验证来实现CTA扫描的肾脏结构细分的平均骰子得分为89.65 $ \%$。结果证明了BA-NET的有效性。
translated by 谷歌翻译
卷积神经网络(CNN)的深度学习体系结构在计算机视野领域取得了杰出的成功。 CNN构建的编码器架构U-Net在生物医学图像分割方面取得了重大突破,并且已在各种实用的情况下应用。但是,编码器部分中每个下采样层和简单堆积的卷积的平等设计不允许U-NET从不同深度提取足够的特征信息。医学图像的复杂性日益增加为现有方法带来了新的挑战。在本文中,我们提出了一个更深层,更紧凑的分裂注意U形网络(DCSAU-NET),该网络有效地利用了基于两个新颖框架的低级和高级语义信息:主要功能保护和紧凑的分裂注意力堵塞。我们评估了CVC-ClinicDB,2018 Data Science Bowl,ISIC-2018和SEGPC-2021数据集的建议模型。结果,DCSAU-NET在联合(MIOU)和F1-SOCRE的平均交点方面显示出比其他最先进的方法(SOTA)方法更好的性能。更重要的是,提出的模型在具有挑战性的图像上表现出了出色的细分性能。我们的工作代码以及更多技术细节,请访问https://github.com/xq141839/dcsau-net。
translated by 谷歌翻译
Glioblastomas是最具侵略性的快速生长的主要脑癌,起源于大脑的胶质细胞。准确鉴定恶性脑肿瘤及其子区域仍然是医学图像分割中最具挑战性问题之一。脑肿瘤分割挑战(Brats)是自动脑胶质细胞瘤分割算法的流行基准,自于其启动。在今年的挑战中,Brats 2021提供了2,000名术前患者的最大多参数(MPMRI)数据集。在本文中,我们提出了两个深度学习框架的新聚合,即在术前MPMRI中的自动胶质母细胞瘤识别的Deepseg和NNU-Net。我们的集合方法获得了92.00,87.33和84.10和Hausdorff距离为3.81,8.91和16.02的骰子相似度分数,用于增强肿瘤,肿瘤核心和全肿瘤区域,单独进行。这些实验结果提供了证据表明它可以在临床上容易地应用,从而助攻脑癌预后,治疗计划和治疗反应监测。
translated by 谷歌翻译
Deep learning has made a breakthrough in medical image segmentation in recent years due to its ability to extract high-level features without the need for prior knowledge. In this context, U-Net is one of the most advanced medical image segmentation models, with promising results in mammography. Despite its excellent overall performance in segmenting multimodal medical images, the traditional U-Net structure appears to be inadequate in various ways. There are certain U-Net design modifications, such as MultiResUNet, Connected-UNets, and AU-Net, that have improved overall performance in areas where the conventional U-Net architecture appears to be deficient. Following the success of UNet and its variants, we have presented two enhanced versions of the Connected-UNets architecture: ConnectedUNets+ and ConnectedUNets++. In ConnectedUNets+, we have replaced the simple skip connections of Connected-UNets architecture with residual skip connections, while in ConnectedUNets++, we have modified the encoder-decoder structure along with employing residual skip connections. We have evaluated our proposed architectures on two publicly available datasets, the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) and INbreast.
translated by 谷歌翻译
Breast cancer is one of the common cancers that endanger the health of women globally. Accurate target lesion segmentation is essential for early clinical intervention and postoperative follow-up. Recently, many convolutional neural networks (CNNs) have been proposed to segment breast tumors from ultrasound images. However, the complex ultrasound pattern and the variable tumor shape and size bring challenges to the accurate segmentation of the breast lesion. Motivated by the selective kernel convolution, we introduce an enhanced selective kernel convolution for breast tumor segmentation, which integrates multiple feature map region representations and adaptively recalibrates the weights of these feature map regions from the channel and spatial dimensions. This region recalibration strategy enables the network to focus more on high-contributing region features and mitigate the perturbation of less useful regions. Finally, the enhanced selective kernel convolution is integrated into U-net with deep supervision constraints to adaptively capture the robust representation of breast tumors. Extensive experiments with twelve state-of-the-art deep learning segmentation methods on three public breast ultrasound datasets demonstrate that our method has a more competitive segmentation performance in breast ultrasound images.
translated by 谷歌翻译
肝癌是世界上最常见的恶性疾病之一。 CT图像中肝脏肿瘤和血管的分割和标记可以为肝脏肿瘤诊断和手术干预中的医生提供便利。在过去的几十年中,基于深度学习的自动CT分段方法在医学领域得到了广泛的关注。在此期间出现了许多最先进的分段算法。然而,大多数现有的分割方法只关心局部特征背景,并在医学图像的全局相关性中具有感知缺陷,这显着影响了肝脏肿瘤和血管的分割效果。我们引入了一种基于变压器和SebottLenet的多尺度特征上下文融合网络,称为TransFusionNet。该网络可以准确地检测和识别肝脏容器的兴趣区域的细节,同时它可以通过利用CT图像的全球信息来改善肝肿瘤的形态边缘的识别。实验表明,TransFusionNet优于公共数据集LITS和3DIRCADB以及我们的临床数据集的最先进方法。最后,我们提出了一种基于训练模型的自动三维重建算法。该算法可以在1秒内快速准确地完成重建。
translated by 谷歌翻译
近年来,基于深度卷积神经网络(CNN)的细分方法已为许多医学分析任务做出了最先进的成就。但是,这些方法中的大多数通过优化结构或添加U-NET的新功能模块来改善性能,从而忽略了粗粒和细粒的语义信息的互补和融合。为了解决上述问题,我们提出了一个称为渐进学习网络​​(PL-NET)的医学图像分割框架,其中包括内部渐进式学习(IPL)和外部渐进学习(EPL)。 PL-NET具有以下优点:(1)IPL将特征提取为两个“步骤”,它们可以混合不同尺寸的接收场并捕获从粗粒度到细粒度的语义信息,而无需引入其他参数; (2)EPL将训练过程分为两个“阶段”以优化参数,并在上一阶段中实现粗粒信息的融合,并在后期阶段进行细粒度。我们在不同的医学图像分析任务中评估了我们的方法,结果表明,PL-NET的分割性能优于U-NET及其变体的最新方法。
translated by 谷歌翻译
精确分割器官 - 危险(OARS)是优化放射治疗计划的先驱。现有的基于深度学习的多尺度融合体系结构已显示出2D医疗图像分割的巨大能力。他们成功的关键是汇总全球环境并保持高分辨率表示。但是,当转化为3D分割问题时,由于其大量的计算开销和大量数据饮食,现有的多尺度融合体系结构可能表现不佳。为了解决此问题,我们提出了一个新的OAR分割框架,称为Oarfocalfusenet,该框架融合了多尺度功能,并采用焦点调制来捕获多个尺度的全局本地上下文。每个分辨率流都具有来自不同分辨率量表的特征,并且多尺度信息汇总到模型多样化的上下文范围。结果,功能表示将进一步增强。在我们的实验设置中与OAR分割以及多器官分割的全面比较表明,我们提出的Oarfocalfusenet在公开可用的OpenKBP数据集和Synapse Multi-Organ细分方面的最新最新方法优于最新的最新方法。在标准评估指标方面,提出的两种方法(3D-MSF和Oarfocalfusenet)均表现出色。我们的最佳性能方法(Oarfocalfusenet)在OpenKBP数据集上获得的骰子系数为0.7995,Hausdorff的距离为5.1435,而Synapse Multi-Organ分段数据集则获得了0.8137的骰子系数。
translated by 谷歌翻译
医学成像的病变分割是临床研究中的一个重要课题。研究人员提出了各种检测和分段算法来解决这项任务。最近,基于深度学习的方法显着提高了传统方法的性能。然而,大多数最先进的深度学习方法需要手动设计多个网络组件和培训策略。在本文中,我们提出了一种新的自动化机器学习算法T-Automl,不仅搜索最佳神经结构,而且还可以同时找到超参数和数据增强策略的最佳组合。该方法采用现代变压器模型,引入了适应搜索空间嵌入的动态长度,并且可以显着提高搜索能力。我们在几个大型公共病变分割数据集上验证T-Automl并实现最先进的性能。
translated by 谷歌翻译
在医学图像分割任务中,脑肿瘤分割仍然是一个挑战。随着变压器在各种计算机视觉任务中的应用,变压器块显示了在全球空间中学习长距离依赖性的能力,这是与CNN互补的。在本文中,我们提出了一个新型的基于变压器的生成对抗网络,以自动分割具有多模式MRI的脑肿瘤。我们的架构由一个发电机和一个歧视器组成,这些发电机和歧视器接受了最小游戏进度的培训。发电机基于典型的“ U形”编码器架构,其底层由带有Resnet的变压器块组成。此外,发电机还接受了深度监督技术的培训。我们设计的鉴别器是一个基于CNN的网络,具有多尺度$ L_ {1} $损失,事实证明,这对于医学语义图像分割是有效的。为了验证我们方法的有效性,我们对BRATS2015数据集进行了实验,比以前的最新方法实现了可比或更好的性能。
translated by 谷歌翻译
深度学习技术的进步为生物医学图像分析应用产生了巨大的贡献。随着乳腺癌是女性中最致命的疾病,早期检测是提高生存能力的关键手段。如超声波的医学成像呈现出色器官功能的良好视觉表现;然而,对于任何分析这种扫描的放射科学家,这种扫描是挑战和耗时,这延迟了诊断过程。虽然提出了各种深度学习的方法,但是通过乳房超声成像介绍了具有最有效的残余交叉空间关注引导u-Net(RCA-IUnet)模型的最小训练参数,以进一步改善肿瘤分割不同肿瘤尺寸的分割性能。 RCA-IUNET模型跟随U-Net拓扑,剩余初始化深度可分离卷积和混合池(MAX池和光谱池)层。此外,添加了交叉空间注意滤波器以抑制无关的特征并专注于目标结构。建议模型的分割性能在使用标准分割评估指标的两个公共数据集上验证,其中它表现出其他最先进的分段模型。
translated by 谷歌翻译
对医学图像的器官或病变的准确分割对于可靠的疾病和器官形态计量学的可靠诊断至关重要。近年来,卷积编码器解码器解决方案在自动医疗图像分割领域取得了重大进展。由于卷积操作中的固有偏见,先前的模型主要集中在相邻像素形成的局部视觉提示上,但无法完全对远程上下文依赖性进行建模。在本文中,我们提出了一个新型的基于变压器的注意力指导网络,称为Transattunet,其中多层引导注意力和多尺度跳过连接旨在共同增强语义分割体系结构的性能。受到变压器的启发,具有变压器自我注意力(TSA)和全球空间注意力(GSA)的自我意识注意(SAA)被纳入Transattunet中,以有效地学习编码器特征之间的非本地相互作用。此外,我们还使用解码器块之间的其他多尺度跳过连接来汇总具有不同语义尺度的上采样功能。这样,多尺度上下文信息的表示能力就可以增强以产生判别特征。从这些互补组件中受益,拟议的Transattunet可以有效地减轻卷积层堆叠和连续采样操作引起的细节损失,最终提高医学图像的细分质量。来自不同成像方式的多个医疗图像分割数据集进行了广泛的实验表明,所提出的方法始终优于最先进的基线。我们的代码和预培训模型可在以下网址找到:https://github.com/yishuliu/transattunet。
translated by 谷歌翻译
随着深度学习方法的进步,如深度卷积神经网络,残余神经网络,对抗网络的进步。 U-Net架构最广泛利用生物医学图像分割,以解决目标区域或子区域的识别和检测的自动化。在最近的研究中,基于U-Net的方法在不同应用中显示了最先进的性能,以便在脑肿瘤,肺癌,阿尔茨海默,乳腺癌等疾病的早期诊断和治疗中发育计算机辅助诊断系统等,使用各种方式。本文通过描述U-Net框架来提出这些方法的成功,然后通过执行1)型号的U-Net变体进行综合分析,2)模特内分类,建立更好的见解相关的挑战和解决方案。此外,本文还强调了基于U-Net框架在持续的大流行病,严重急性呼吸综合征冠状病毒2(SARS-COV-2)中的贡献也称为Covid-19。最后,分析了这些U-Net变体的优点和相似性以及生物医学图像分割所涉及的挑战,以发现该领域的未来未来的研究方向。
translated by 谷歌翻译
Mitosis nuclei count is one of the important indicators for the pathological diagnosis of breast cancer. The manual annotation needs experienced pathologists, which is very time-consuming and inefficient. With the development of deep learning methods, some models with good performance have emerged, but the generalization ability should be further strengthened. In this paper, we propose a two-stage mitosis segmentation and classification method, named SCMitosis. Firstly, the segmentation performance with a high recall rate is achieved by the proposed depthwise separable convolution residual block and channel-spatial attention gate. Then, a classification network is cascaded to further improve the detection performance of mitosis nuclei. The proposed model is verified on the ICPR 2012 dataset, and the highest F-score value of 0.8687 is obtained compared with the current state-of-the-art algorithms. In addition, the model also achieves good performance on GZMH dataset, which is prepared by our group and will be firstly released with the publication of this paper. The code will be available at: https://github.com/antifen/mitosis-nuclei-segmentation.
translated by 谷歌翻译
鼻咽癌(NPC)是一种恶性肿瘤。在计算断层扫描(CT)图像的风险(OAR)的准确和自动分割(桨)是临床显着的。近年来,U-Net代表的深度学习模型已广泛应用于医学图像分割任务,这可以帮助医生减少工作量并更快地获得准确的结果。在NPC的OAR分割中,OAR的大小是可变的,特别是其中一些是小的。由于缺乏使用全局和多尺寸信息,传统的深神经网络在分割期间表现不佳。本文提出了一种新的SE连接金字塔网络(SECP-NET)。 SECP-Net提取全局和多尺寸信息流,使用SE连接(SEC)模块和网络的金字塔结构,用于改善分割性能,尤其是小器官。 SECP-NET还设计了一种自动上下文级联网络,以进一步提高分段性能。比较实验在SECP-NET和其他最近方法的与头部和颈部的CT图像上的数据集进行。五倍的交叉验证用于根据两个度量,即骰子和jaccard相似性来评估性能。实验结果表明,SECP-Net可以在这项挑战任务中实现SOTA性能。
translated by 谷歌翻译
我们分享了我们最近的发现,以试图培训通用分割网络的各种细胞类型和成像方式。我们的方法建立在广义的U-NET体系结构上,该体系结构允许单独评估每个组件。我们修改了传统的二进制培训目标,以包括三个类以进行直接实例细分。进行了有关培训方案,培训设置,网络骨架和各个模块的详细实验。我们提出的培训方案依次从每个数据集中吸取小匹配,并且在优化步骤之前积累了梯度。我们发现,培训通用网络的关键是所有数据集上的历史监督,并且有必要以公正的方式对每个数据集进行采样。我们的实验还表明,可能存在共同的特征来定义细胞类型和成像方式的细胞边界,这可以允许应用训练有素的模型完全看不见的数据集。一些培训技巧可以进一步提高细分性能,包括交叉渗透损失功能中的班级权重,精心设计的学习率调度程序,较大的图像作物以进行上下文信息以及不平衡类别的其他损失条款。我们还发现,由于它们更可靠的统计估计和更高的语义理解,分割性能可以受益于组规范化层和缺陷的空间金字塔池模块。我们参与了在IEEE国际生物医学成像研讨会(ISBI)2021举行的第六个细胞跟踪挑战(CTC)。我们的方法被评估为在主要曲目的初始提交期间,作为最佳亚军,并在额外的竞争中获得了第三名,以准备摘要出版物。
translated by 谷歌翻译
肾癌是全球最普遍的癌症之一。肾癌的临床体征包括血尿和下背部不适,这对患者非常痛苦。由于人工智能和深度学习的快速增长,在过去的几年中,医学图像分割发生了巨大的发展。在本文中,我们提出了用于肾脏多结构分割的修改NN-UNET。我们的解决方案是使用3D完整分辨率U-NET建立在蓬勃发展的NN-UNET架构上的。首先,为此特定任务修改了各种超参数。然后,通过将3D完整分辨率NNUNET体系结构中的过滤器数量加倍,以实现更大的网络,我们可能会捕获更大的接收场。最后,我们在解码器中包括一个轴向注意机制,可以在解码阶段获得全局信息,以防止局部知识的丧失。与3D U-NET,MNET等传统方法相比,我们修改的NN-UNET在KIPA2022数据集上实现了最新的性能。
translated by 谷歌翻译