我们正式化并研究通过嵌入设计凸替代损失函数的自然方法,例如分类,排名或结构化预测等问题。在这种方法中,一个人将每一个有限的预测(例如排名)嵌入$ r^d $中的一个点,将原始损失值分配给这些要点,并以某种方式“凸出”损失以获得替代物。我们在这种方法和多面体(分段线性凸)的替代损失之间建立了牢固的联系:每个离散损失都被一些多面体损失嵌入,并且每个多面体损失都嵌入了一些离散的损失。此外,嵌入会产生一致的链接功能以及线性替代遗憾界限。正如我们用几个示例所说明的那样,我们的结果具有建设性。特别是,我们的框架为文献中各种多面体替代物以及不一致的替代物提供了简洁的证据或不一致的证据,它进一步揭示了这些代理人一致的离散损失。我们继续展示嵌入的其他结构,例如嵌入和匹配贝叶斯风险的等效性以及各种非算术概念的等效性。使用这些结果,我们确定与多面体替代物一起工作时,间接启发是一致性的必要条件也足够了。
translated by 谷歌翻译
我们正规化并研究通过嵌入式设计凸代理损失功能的自然方法,诸如分类,排名或结构化预测等问题。在这种方法中,一个将每个主要的预测(例如\排名)嵌入$ \ mathbb {r} ^ d $中的一个点,将原始损耗值分配给这些点,并以某种方式“凸出”损失获得代理人。我们在这种方法和多面体(分段 - 线性凸)代理损失之间建立了强大的联系。鉴于任何多面体损失$ L $,我们提供了一个联系功能的建设,其中$ l $是它嵌入的损失的一致代理人。相反,我们展示了如何为任何给定的离散损失构建一致的多面体代理。我们的框架在文献中产生了各种多面体代理人的一致性或不一致的简洁证明,并且对于不一致的代理人,它进一步揭示了这些替代品的离散损失是一致的。我们展示了一些额外的嵌入结构,例如嵌入和匹配贝叶斯风险的等价,以及各种概念的非赎罪概念的等价。使用这些结果,我们建立了间接诱导,在使用多面体替代品时也足够了。
translated by 谷歌翻译
Top-$ k $分类是对信息检索,图像分类和其他极端分类设置中广泛使用的多类分类的概括。已经提出了几种类似铰链的(分段线性)替代物,但所有这些都不是不一致的或不一致的。对于提出的凸状替代物(即多面体),我们应用了Finocchiaro等人的最新嵌入框架。 (2019; 2022)确定替代物是一致的预测问题。这些问题都可以解释为顶部 - $ K $分类的变体,这可能与某些应用程序更好。我们利用此分析来得出对条件标签分布的限制,在该分布中,这些拟议的替代物在顶级$ k $中变得一致。有人进一步建议,对于顶部$ k $,每个凸铰链样的替代物都必须不一致。但是,我们使用相同的嵌入框架为此问题提供第一个一致的多面体代理。
translated by 谷歌翻译
统计决策问题是统计机器学习的基础。最简单的问题是二进制和多类分类以及类概率估计。其定义的核心是损失函数的选择,这是评估解决方案质量的手段。在本文中,我们从一个新的角度从基本的成分是具有特定结构的凸集,从而系统地开发了此类问题的损失函数理论。损耗函数定义为凸集的支持函数的子级别。因此,它是自动适当的(校准以估计概率)。这种观点提供了三个新颖的机会。它可以发展损失与(反)纳入之间的基本关系,而这似乎以前没有注意到。其次,它可以开发由凸集的计算诱导的损失的演算,从而允许不同损失之间的插值,因此是将损失定制到特定问题的潜在有用的设计工具。在此过程中,我们基于凸组集合的M-sums的现有结果,并大大扩展了现有的结果。第三,透视图导致了一种自然理论的“极性”(或“反向”)损失函数,这些函数源自凸集的极性二元,定义了损失,并形成了VOVK聚合算法的自然通用替代函数。
translated by 谷歌翻译
对抗性鲁棒性是各种现代机器学习应用中的关键财产。虽然它是最近几个理论研究的主题,但与对抗性稳健性有关的许多重要问题仍然是开放的。在这项工作中,我们研究了有关对抗对抗鲁棒性的贝叶斯最优性的根本问题。我们提供了一般的充分条件,可以保证贝叶斯最佳分类器的存在,以满足对抗性鲁棒性。我们的结果可以提供一种有用的工具,用于随后研究对抗性鲁棒性及其一致性的替代损失。这份稿件是“关于普通贝叶斯分类器的存在”在神经潮端中发表的延伸版本。原始纸张的结果不适用于一些非严格凸的规范。在这里,我们将结果扩展到所有可能的规范。
translated by 谷歌翻译
We present a new perspective on loss minimization and the recent notion of Omniprediction through the lens of Outcome Indistingusihability. For a collection of losses and hypothesis class, omniprediction requires that a predictor provide a loss-minimization guarantee simultaneously for every loss in the collection compared to the best (loss-specific) hypothesis in the class. We present a generic template to learn predictors satisfying a guarantee we call Loss Outcome Indistinguishability. For a set of statistical tests--based on a collection of losses and hypothesis class--a predictor is Loss OI if it is indistinguishable (according to the tests) from Nature's true probabilities over outcomes. By design, Loss OI implies omniprediction in a direct and intuitive manner. We simplify Loss OI further, decomposing it into a calibration condition plus multiaccuracy for a class of functions derived from the loss and hypothesis classes. By careful analysis of this class, we give efficient constructions of omnipredictors for interesting classes of loss functions, including non-convex losses. This decomposition highlights the utility of a new multi-group fairness notion that we call calibrated multiaccuracy, which lies in between multiaccuracy and multicalibration. We show that calibrated multiaccuracy implies Loss OI for the important set of convex losses arising from Generalized Linear Models, without requiring full multicalibration. For such losses, we show an equivalence between our computational notion of Loss OI and a geometric notion of indistinguishability, formulated as Pythagorean theorems in the associated Bregman divergence. We give an efficient algorithm for calibrated multiaccuracy with computational complexity comparable to that of multiaccuracy. In all, calibrated multiaccuracy offers an interesting tradeoff point between efficiency and generality in the omniprediction landscape.
translated by 谷歌翻译
机器学习通常以经典的概率理论为前提,这意味着聚集是基于期望的。现在有多种原因可以激励人们将经典概率理论作为机器学习的数学基础。我们系统地检查了一系列强大而丰富的此类替代品,即各种称为光谱风险度量,Choquet积分或Lorentz规范。我们提出了一系列的表征结果,并演示了使这个光谱家族如此特别的原因。在此过程中,我们证明了所有连贯的风险度量的自然分层,从它们通过利用重新安排不变性Banach空间理论的结果来诱导的上层概率。我们凭经验证明了这种新的不确定性方法如何有助于解决实用的机器学习问题。
translated by 谷歌翻译
我们在非参数二进制分类的一个对抗性训练问题之间建立了等价性,以及规范器是非识别范围功能的正则化风险最小化问题。由此产生的正常风险最小化问题允许在图像分析和基于图形学习中常常研究的$ L ^ 1 + $(非本地)$ \ Operatorvers {TV} $的精确凸松弛。这种重构揭示了丰富的几何结构,这反过来允许我们建立原始问题的最佳解决方案的一系列性能,包括存在最小和最大解决方案(以合适的意义解释),以及常规解决方案的存在(也以合适的意义解释)。此外,我们突出了对抗性训练和周长最小化问题的联系如何为涉及周边/总变化的正规风险最小化问题提供一种新颖的直接可解释的统计动机。我们的大部分理论结果与用于定义对抗性攻击的距离无关。
translated by 谷歌翻译
我们有助于更好地理解由具有Relu激活和给定架构的神经网络表示的功能。使用来自混合整数优化,多面体理论和热带几何的技术,我们为普遍近似定理提供了数学逆向,这表明单个隐藏层足以用于学习任务。特别是,我们调查完全可增值功能是否完全可以通过添加更多层(没有限制大小)来严格增加。由于它为神经假设类别代表的函数类提供给算法和统计方面,这个问题对算法和统计方面具有潜在的影响。然而,据我们所知,这个问题尚未在神经网络文学中调查。我们还在这些神经假设类别中代表功能所需的神经网络的大小上存在上限。
translated by 谷歌翻译
我们介绍了统计实验的两种新的信息度量,它们概括和包含$ \ phi $ -diverences,积分概率指标,$ \ mathfrak {n} $ - distances(mmd)和$(f,\ gamma)$ divergences $ divergences在两个或多个分布之间。这使我们能够在信息的度量与统计决策问题的贝叶斯风险之间得出简单的几何关系,从而将变异的$ \ phi $ -divergence代表扩展到多个分布,以完全对称的方式。在马尔可夫运营商的行动下,新的分歧家庭被关闭,该家族产生了信息处理平等,这是经典数据处理不平等的完善和概括。这种平等使人深入了解假设类别在经典风险最小化中的重要性。
translated by 谷歌翻译
套索是一种高维回归的方法,当时,当协变量$ p $的订单数量或大于观测值$ n $时,通常使用它。由于两个基本原因,经典的渐近态性理论不适用于该模型:$(1)$正规风险是非平滑的; $(2)$估算器$ \ wideHat {\ boldsymbol {\ theta}} $与true参数vector $ \ boldsymbol {\ theta}^*$无法忽略。结果,标准的扰动论点是渐近正态性的传统基础。另一方面,套索估计器可以精确地以$ n $和$ p $大,$ n/p $的订单为一。这种表征首先是在使用I.I.D的高斯设计的情况下获得的。协变量:在这里,我们将其推广到具有非偏差协方差结构的高斯相关设计。这是根据更简单的``固定设计''模型表示的。我们在两个模型中各种数量的分布之间的距离上建立了非反应界限,它们在合适的稀疏类别中均匀地固定在信号上$ \ boldsymbol {\ theta}^*$。作为应用程序,我们研究了借助拉索的分布,并表明需要校正程度对于计算有效的置信区间是必要的。
translated by 谷歌翻译
我们派生并分析了一种用于估计有限簇树中的所有分裂的通用,递归算法以及相应的群集。我们进一步研究了从内核密度估计器接收级别设置估计时该通用聚类算法的统计特性。特别是,我们推出了有限的样本保证,一致性,收敛率以及用于选择内核带宽的自适应数据驱动策略。对于这些结果,我们不需要与H \“{o}连续性等密度的连续性假设,而是仅需要非参数性质的直观几何假设。
translated by 谷歌翻译
当在未知约束集中任意变化的分布中生成数据时,我们会考虑使用专家建议的预测。这种半反向的设置包括(在极端)经典的I.I.D.设置时,当未知约束集限制为单身人士时,当约束集是所有分布的集合时,不受约束的对抗设置。对冲状态中,对冲算法(长期以来已知是最佳的最佳速率(速率))最近被证明是对I.I.D.的最佳最小值。数据。在这项工作中,我们建议放松I.I.D.通过在约束集的所有自然顺序上寻求适应性来假设。我们在各个级别的Minimax遗憾中提供匹配的上限和下限,表明确定性学习率的对冲在极端之外是次优的,并证明人们可以在各个级别的各个层面上都能适应Minimax的遗憾。我们使用以下规范化领导者(FTRL)框架实现了这种最佳适应性,并采用了一种新型的自适应正则化方案,该方案隐含地缩放为当前预测分布的熵的平方根,而不是初始预测分布的熵。最后,我们提供了新的技术工具来研究FTRL沿半逆转频谱的统计性能。
translated by 谷歌翻译
We consider the problem of estimating a multivariate function $f_0$ of bounded variation (BV), from noisy observations $y_i = f_0(x_i) + z_i$ made at random design points $x_i \in \mathbb{R}^d$, $i=1,\ldots,n$. We study an estimator that forms the Voronoi diagram of the design points, and then solves an optimization problem that regularizes according to a certain discrete notion of total variation (TV): the sum of weighted absolute differences of parameters $\theta_i,\theta_j$ (which estimate the function values $f_0(x_i),f_0(x_j)$) at all neighboring cells $i,j$ in the Voronoi diagram. This is seen to be equivalent to a variational optimization problem that regularizes according to the usual continuum (measure-theoretic) notion of TV, once we restrict the domain to functions that are piecewise constant over the Voronoi diagram. The regression estimator under consideration hence performs (shrunken) local averaging over adaptively formed unions of Voronoi cells, and we refer to it as the Voronoigram, following the ideas in Koenker (2005), and drawing inspiration from Tukey's regressogram (Tukey, 1961). Our contributions in this paper span both the conceptual and theoretical frontiers: we discuss some of the unique properties of the Voronoigram in comparison to TV-regularized estimators that use other graph-based discretizations; we derive the asymptotic limit of the Voronoi TV functional; and we prove that the Voronoigram is minimax rate optimal (up to log factors) for estimating BV functions that are essentially bounded.
translated by 谷歌翻译
在负面的感知问题中,我们给出了$ n $数据点$({\ boldsymbol x} _i,y_i)$,其中$ {\ boldsymbol x} _i $是$ d $ -densional vector和$ y_i \ in \ { + 1,-1 \} $是二进制标签。数据不是线性可分离的,因此我们满足自己的内容,以找到最大的线性分类器,具有最大的\ emph {否定}余量。换句话说,我们想找到一个单位常规矢量$ {\ boldsymbol \ theta} $,最大化$ \ min_ {i \ le n} y_i \ langle {\ boldsymbol \ theta},{\ boldsymbol x} _i \ rangle $ 。这是一个非凸优化问题(它相当于在Polytope中找到最大标准矢量),我们在两个随机模型下研究其典型属性。我们考虑比例渐近,其中$ n,d \ to \ idty $以$ n / d \ to \ delta $,并在最大边缘$ \ kappa _ {\ text {s}}(\ delta)上证明了上限和下限)$或 - 等效 - 在其逆函数$ \ delta _ {\ text {s}}(\ kappa)$。换句话说,$ \ delta _ {\ text {s}}(\ kappa)$是overparametization阈值:以$ n / d \ le \ delta _ {\ text {s}}(\ kappa) - \ varepsilon $一个分类器实现了消失的训练错误,具有高概率,而以$ n / d \ ge \ delta _ {\ text {s}}(\ kappa)+ \ varepsilon $。我们在$ \ delta _ {\ text {s}}(\ kappa)$匹配,以$ \ kappa \ to - \ idty $匹配。然后,我们分析了线性编程算法来查找解决方案,并表征相应的阈值$ \ delta _ {\ text {lin}}(\ kappa)$。我们观察插值阈值$ \ delta _ {\ text {s}}(\ kappa)$和线性编程阈值$ \ delta _ {\ text {lin {lin}}(\ kappa)$之间的差距,提出了行为的问题其他算法。
translated by 谷歌翻译
We study a family of adversarial multiclass classification problems and provide equivalent reformulations in terms of: 1) a family of generalized barycenter problems introduced in the paper and 2) a family of multimarginal optimal transport problems where the number of marginals is equal to the number of classes in the original classification problem. These new theoretical results reveal a rich geometric structure of adversarial learning problems in multiclass classification and extend recent results restricted to the binary classification setting. A direct computational implication of our results is that by solving either the barycenter problem and its dual, or the MOT problem and its dual, we can recover the optimal robust classification rule and the optimal adversarial strategy for the original adversarial problem. Examples with synthetic and real data illustrate our results.
translated by 谷歌翻译
Network data are ubiquitous in modern machine learning, with tasks of interest including node classification, node clustering and link prediction. A frequent approach begins by learning an Euclidean embedding of the network, to which algorithms developed for vector-valued data are applied. For large networks, embeddings are learned using stochastic gradient methods where the sub-sampling scheme can be freely chosen. Despite the strong empirical performance of such methods, they are not well understood theoretically. Our work encapsulates representation methods using a subsampling approach, such as node2vec, into a single unifying framework. We prove, under the assumption that the graph is exchangeable, that the distribution of the learned embedding vectors asymptotically decouples. Moreover, we characterize the asymptotic distribution and provided rates of convergence, in terms of the latent parameters, which includes the choice of loss function and the embedding dimension. This provides a theoretical foundation to understand what the embedding vectors represent and how well these methods perform on downstream tasks. Notably, we observe that typically used loss functions may lead to shortcomings, such as a lack of Fisher consistency.
translated by 谷歌翻译
我们考虑使用对抗鲁棒性学习的样本复杂性。对于此问题的大多数现有理论结果已经考虑了数据中不同类别在一起或重叠的设置。通过一些实际应用程序,我们认为,相比之下,存在具有完美精度和稳健性的分类器的分类器的良好分离的情况,并表明样品复杂性叙述了一个完全不同的故事。具体地,对于线性分类器,我们显示了大类分离的分布式,其中任何算法的预期鲁棒丢失至少是$ \ω(\ FRAC {D} {n})$,而最大边距算法已预期标准亏损$ o(\ frac {1} {n})$。这表明了通过现有技术不能获得的标准和鲁棒损耗中的间隙。另外,我们介绍了一种算法,给定鲁棒率半径远小于类之间的间隙的实例,给出了预期鲁棒损失的解决方案是$ O(\ FRAC {1} {n})$。这表明,对于非常好的数据,可实现$ O(\ FRAC {1} {n})$的收敛速度,否则就是这样。我们的结果适用于任何$ \ ell_p $ norm以$ p> 1 $(包括$ p = \ idty $)为稳健。
translated by 谷歌翻译
我们通过反馈信息研究了离线和在线上下文优化的问题,而不是观察损失,我们会在事后观察到最佳的动作,而是对目标功能充分了解的甲骨文。我们的目标是最大程度地减少遗憾,这被定义为我们的损失与全知的甲骨所产生的损失之间的区别。在离线设置中,决策者可以从过去段中获得信息,并且需要做出一个决策,而在在线环境中,决策者在每个时期内都会动态地基于一组新的可行动作和上下文功能,以动态进行决策。 。对于离线设置,我们表征了最佳的最小策略,确定可以实现的性能,这是数据引起的信息的基础几何形状的函数。在在线环境中,我们利用这种几何表征来优化累积遗憾。我们开发了一种算法,该算法在时间范围内产生了对数的第一个遗憾。
translated by 谷歌翻译
Neural networks with random weights appear in a variety of machine learning applications, most prominently as the initialization of many deep learning algorithms and as a computationally cheap alternative to fully learned neural networks. In the present article, we enhance the theoretical understanding of random neural networks by addressing the following data separation problem: under what conditions can a random neural network make two classes $\mathcal{X}^-, \mathcal{X}^+ \subset \mathbb{R}^d$ (with positive distance) linearly separable? We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability. Crucially, the number of required neurons is explicitly linked to geometric properties of the underlying sets $\mathcal{X}^-, \mathcal{X}^+$ and their mutual arrangement. This instance-specific viewpoint allows us to overcome the usual curse of dimensionality (exponential width of the layers) in non-pathological situations where the data carries low-complexity structure. We quantify the relevant structure of the data in terms of a novel notion of mutual complexity (based on a localized version of Gaussian mean width), which leads to sound and informative separation guarantees. We connect our result with related lines of work on approximation, memorization, and generalization.
translated by 谷歌翻译