滤波方程控制给定部分,并且可能嘈杂,依次到达的信号过程的条件分布的演变。它们的数值近似在许多真实应用中起着核心作用,包括数字天气预报,金融和工程。近似滤波方程解决方案的一种经典方法是使用由Gyongy,Krylov,Legland,Legland,Legland的PDE启发方法,称为分裂方法,其中包括其他贡献者。该方法和其他基于PDE的方法,具有特别适用性来解决低维问题。在这项工作中,我们将这种方法与神经网络表示相结合。新方法用于产生信号过程的无通知条件分布的近似值。我们进一步开发递归归一化程序,以恢复信号过程的归一化条件分布。新方案可以在多个时间步骤中迭代,同时保持其渐近无偏见属性完整。我们用Kalman和Benes滤波器的数值近似结果测试神经网络近似。
translated by 谷歌翻译
The purpose of this paper is to explore the use of deep learning for the solution of the nonlinear filtering problem. This is achieved by solving the Zakai equation by a deep splitting method, previously developed for approximate solution of (stochastic) partial differential equations. This is combined with an energy-based model for the approximation of functions by a deep neural network. This results in a computationally fast filter that takes observations as input and that does not require re-training when new observations are received. The method is tested on four examples, two linear in one and twenty dimensions and two nonlinear in one dimension. The method shows promising performance when benchmarked against the Kalman filter and the bootstrap particle filter.
translated by 谷歌翻译
High-dimensional PDEs have been a longstanding computational challenge. We propose to solve highdimensional PDEs by approximating the solution with a deep neural network which is trained to satisfy the differential operator, initial condition, and boundary conditions. Our algorithm is meshfree, which is key since meshes become infeasible in higher dimensions. Instead of forming a mesh, the neural network is trained on batches of randomly sampled time and space points. The algorithm is tested on a class of high-dimensional free boundary PDEs, which we are able to accurately solve in up to 200 dimensions. The algorithm is also tested on a high-dimensional Hamilton-Jacobi-Bellman PDE and Burgers' equation. The deep learning algorithm approximates the general solution to the Burgers' equation for a continuum of different boundary conditions and physical conditions (which can be viewed as a high-dimensional space). We call the algorithm a "Deep Galerkin Method (DGM)" since it is similar in spirit to Galerkin methods, with the solution approximated by a neural network instead of a linear combination of basis functions. In addition, we prove a theorem regarding the approximation power of neural networks for a class of quasilinear parabolic PDEs.
translated by 谷歌翻译
蒙特卡洛方法和深度学习的组合最近导致了在高维度中求解部分微分方程(PDE)的有效算法。相关的学习问题通常被称为基于相关随机微分方程(SDE)的变异公式,可以使用基于梯度的优化方法最小化相应损失。因此,在各自的数值实现中,至关重要的是要依靠足够的梯度估计器,这些梯度估计器表现出较低的差异,以便准确,迅速地达到收敛性。在本文中,我们严格研究了在线性Kolmogorov PDE的上下文中出现的相应数值方面。特别是,我们系统地比较了现有的深度学习方法,并为其表演提供了理论解释。随后,我们建议的新方法在理论上和数字上都可以证明更健壮,从而导致了实质性的改进。
translated by 谷歌翻译
本论文主要涉及解决深层(时间)高斯过程(DGP)回归问题的状态空间方法。更具体地,我们代表DGP作为分层组合的随机微分方程(SDES),并且我们通过使用状态空间过滤和平滑方法来解决DGP回归问题。由此产生的状态空间DGP(SS-DGP)模型生成丰富的电视等级,与建模许多不规则信号/功能兼容。此外,由于他们的马尔可道结构,通过使用贝叶斯滤波和平滑方法可以有效地解决SS-DGPS回归问题。本论文的第二次贡献是我们通过使用泰勒力矩膨胀(TME)方法来解决连续离散高斯滤波和平滑问题。这诱导了一类滤波器和SmooThers,其可以渐近地精确地预测随机微分方程(SDES)解决方案的平均值和协方差。此外,TME方法和TME过滤器和SmoOthers兼容模拟SS-DGP并解决其回归问题。最后,本文具有多种状态 - 空间(深)GPS的应用。这些应用主要包括(i)来自部分观察到的轨迹的SDES的未知漂移功能和信号的光谱 - 时间特征估计。
translated by 谷歌翻译
求解高维局部微分方程是经济学,科学和工程的反复挑战。近年来,已经开发了大量的计算方法,其中大多数依赖于蒙特卡罗采样和基于深度学习的近似的组合。对于椭圆形和抛物线问题,现有方法可以广泛地分类为依赖于$ \ Texit {向后随机微分方程} $(BSDES)和旨在最小化回归$ L ^ 2 $ -Error( $ \ textit {物理信息的神经网络} $,pinns)。在本文中,我们审查了文献,并提出了一种基于新型$ \ Texit的方法{扩散丢失} $,在BSDES和Pinns之间插值。我们的贡献为对高维PDE的数值方法的统一理解开辟了门,以及结合BSDES和PINNS强度的实施方式。我们还向特征值问题提供概括并进行广泛的数值研究,包括计算非线性SCHR \“odinger运营商的地面状态和分子动态相关的委托功能的计算。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
在本文中,我们提出了一种基于深度学习的数值方案,用于强烈耦合FBSDE,这是由随机控制引起的。这是对深度BSDE方法的修改,其中向后方程的初始值不是一个免费参数,并且新的损失函数是控制问题的成本的加权总和,而差异项与与该的差异相吻合终端条件下的平均误差。我们通过一个数值示例表明,经典深度BSDE方法的直接扩展为FBSDE,失败了简单的线性季度控制问题,并激励新方法为何工作。在定期和有限性的假设上,对时间连续和时间离散控制问题的确切控制,我们为我们的方法提供了错误分析。我们从经验上表明,该方法收敛于三个不同的问题,一个方法是直接扩展Deep BSDE方法的问题。
translated by 谷歌翻译
These notes were compiled as lecture notes for a course developed and taught at the University of the Southern California. They should be accessible to a typical engineering graduate student with a strong background in Applied Mathematics. The main objective of these notes is to introduce a student who is familiar with concepts in linear algebra and partial differential equations to select topics in deep learning. These lecture notes exploit the strong connections between deep learning algorithms and the more conventional techniques of computational physics to achieve two goals. First, they use concepts from computational physics to develop an understanding of deep learning algorithms. Not surprisingly, many concepts in deep learning can be connected to similar concepts in computational physics, and one can utilize this connection to better understand these algorithms. Second, several novel deep learning algorithms can be used to solve challenging problems in computational physics. Thus, they offer someone who is interested in modeling a physical phenomena with a complementary set of tools.
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
连续数据的优化问题出现在,例如强大的机器学习,功能数据分析和变分推理。这里,目标函数被给出为一个(连续)索引目标函数的系列 - 相对于概率测量集成的族聚集。这些问题通常可以通过随机优化方法解决:在随机切换指标执行关于索引目标函数的优化步骤。在这项工作中,我们研究了随机梯度下降算法的连续时间变量,以进行连续数据的优化问题。该所谓的随机梯度过程包括最小化耦合与确定索引的连续时间索引过程的索引目标函数的梯度流程。索引过程是例如,反射扩散,纯跳跃过程或紧凑空间上的其他L evy过程。因此,我们研究了用于连续数据空间的多种采样模式,并允许在算法的运行时进行模拟或流式流的数据。我们分析了随机梯度过程的近似性质,并在恒定下进行了长时间行为和遍历的学习率。我们以噪声功能数据的多项式回归问题以及物理知识的神经网络在多项式回归问题中结束了随机梯度过程的适用性。
translated by 谷歌翻译
Denoising diffusions are state-of-the-art generative models which exhibit remarkable empirical performance and come with theoretical guarantees. The core idea of these models is to progressively transform the empirical data distribution into a simple Gaussian distribution by adding noise using a diffusion. We obtain new samples whose distribution is close to the data distribution by simulating a "denoising" diffusion approximating the time reversal of this "noising" diffusion. This denoising diffusion relies on approximations of the logarithmic derivatives of the noised data densities, known as scores, obtained using score matching. Such models can be easily extended to perform approximate posterior simulation in high-dimensional scenarios where one can only sample from the prior and simulate synthetic observations from the likelihood. These methods have been primarily developed for data on $\mathbb{R}^d$ while extensions to more general spaces have been developed on a case-by-case basis. We propose here a general framework which not only unifies and generalizes this approach to a wide class of spaces but also leads to an original extension of score matching. We illustrate the resulting class of denoising Markov models on various applications.
translated by 谷歌翻译
如今,神经网络广泛用于许多应用中,作为人工智能模型,用于学习任务。由于通常神经网络处理非常大量的数据,因此在平均场和动力学理论内方便地制定它们。在这项工作中,我们专注于特定类别的神经网络,即残余神经网络,假设每层的特征是相同数量的神经元数量$ N $,这是由数据的维度固定的。这种假设允许将残余神经网络作为时间离散化的常微分方程解释,与神经微分方程类似。然后在无限的许多输入数据的极限中获得平均场描述。这导致VLASOV型部分微分方程描述了输入数据分布的演变。我们分析了网络参数的稳态和灵敏度,即重量和偏置。在线性激活功能和一维输入数据的简单设置中,矩的研究为网络的参数选择提供了见解。此外,通过随机残留神经网络的启发的微观动态的修改导致网络的Fokker-Planck配方,其中网络训练的概念被拟合分布的任务所取代。通过人工数值模拟验证所执行的分析。特别是,提出了对分类和回归问题的结果。
translated by 谷歌翻译
在本文中,我们主要专注于用边界条件求解高维随机汉密尔顿系统,并从随机对照的角度提出一种新的方法。为了获得哈密顿系统的近似解,我们首先引入了一个相应的随机最佳控制问题,使得汉密尔顿控制问题的系统正是我们需要解决的,然后开发两种不同的算法适合不同的控制问题。深神经网络近似随机控制。从数值结果中,与先前从求解FBSDES开发的深度FBSDE方法相比,新颖的算法会聚得更快,这意味着它们需要更少的训练步骤,并展示不同哈密顿系统的更稳定的收敛。
translated by 谷歌翻译
我们根据二阶Langevin动力学的集合近似提出了一种采样方法。对数目标密度的附加辅助动量变量中附加了二次项,并引入了阻尼驱动的汉密尔顿动力学。所得的随机微分方程对于Gibbs度量不变,而目标坐标的边际坐标。根据动力学定律,基于协方差的预处理不会改变此不变性属性,并且被引入以加速融合到吉布斯度量。可以通过合奏方法近似产生的平均场动力学。这导致无梯度和仿射不变的随机动力学系统。数值结果证明了其作为贝叶斯反问题中数值采样器的基础的潜力。
translated by 谷歌翻译
Developing algorithms for solving high-dimensional partial differential equations (PDEs) has been an exceedingly difficult task for a long time, due to the notoriously difficult problem known as the "curse of dimensionality". This paper introduces a deep learning-based approach that can handle general high-dimensional parabolic PDEs. To this end, the PDEs are reformulated using backward stochastic differential equations and the gradient of the unknown solution is approximated by neural networks, very much in the spirit of deep reinforcement learning with the gradient acting as the policy function. Numerical results on examples including the nonlinear Black-Scholes equation, the Hamilton-Jacobi-Bellman equation, and the Allen-Cahn equation suggest that the proposed algorithm is quite effective in high dimensions, in terms of both accuracy and cost. This opens up new possibilities in economics, finance, operational research, and physics, by considering all participating agents, assets, resources, or particles together at the same time, instead of making ad hoc assumptions on their inter-relationships.
translated by 谷歌翻译
非线性部分差分差异方程成功地用于描述自然科学,工程甚至金融中的广泛时间依赖性现象。例如,在物理系统中,Allen-Cahn方程描述了与相变相关的模式形成。相反,在金融中,黑色 - choles方程描述了衍生投资工具价格的演变。这种现代应用通常需要在经典方法无效的高维度中求解这些方程。最近,E,Han和Jentzen [1] [2]引入了一种有趣的新方法。主要思想是构建一个深网,该网络是根据科尔莫戈罗夫方程式下离散的随机微分方程样本进行训练的。该网络至少能够在数值上近似,在整个空间域中具有多项式复杂性的Kolmogorov方程的解。在这一贡献中,我们通过使用随机微分方程的不同离散方案来研究深网的变体。我们在基准的示例上比较了相关网络的性能,并表明,对于某些离散方案,可以改善准确性,而不会影响观察到的计算复杂性。
translated by 谷歌翻译
我们确定有效的随机微分方程(SDE),用于基于精细的粒子或基于试剂的模拟的粗糙观察结果;然后,这些SDE提供了精细规模动力学的有用的粗替代模型。我们通过神经网络近似这些有效的SDE中的漂移和扩散率函数,可以将其视为有效的随机分解。损失函数的灵感来自于已建立的随机数值集成剂的结构(在这里,欧拉 - 玛鲁山和米尔斯坦);因此,我们的近似值可以受益于这些基本数值方案的向后误差分析。当近似粗的模型(例如平均场方程)可用时,它们还自然而然地适合“物理信息”的灰色盒识别。 Langevin型方程和随机部分微分方程(SPDE)的现有数值集成方案也可以用于训练;我们在随机强迫振荡器和随机波方程式上证明了这一点。我们的方法不需要长时间的轨迹,可以在散落的快照数据上工作,并且旨在自然处理每个快照的不同时间步骤。我们考虑了预先知道粗糙的集体观察物以及必须以数据驱动方式找到它们的情况。
translated by 谷歌翻译
我们考虑扩散过程的过滤和预测问题。信号和观察是由由相关的维纳过程驱动的随机微分方程(SDE)建模的。在经典估计理论中,用于滤波和预测度量的测量值随机偏微分方程(SPDE)。这些方程可能很难在数值上求解。我们使用条件生成对抗网络(GAN)与签名(来自粗糙路径理论的对象)相结合提供了近似算法。足够平滑路径的签名完全决定了路径。结果,在某些情况下,基于签名的gan被证明可以有效地近似随机过程的定律。对于我们的算法,我们将此方法扩展到从条件定律中进行样本,鉴于嘈杂的部分观察结果。我们的发电机是使用神经微分方程(NDE)构建的,依赖于其通用近似属性。我们在提供严格的数学框架方面表现出良好的性能。数值结果显示了我们算法的效率。
translated by 谷歌翻译
最近,通过深度学习框架提取动态系统的数据驱动法则在各个领域都引起了很多关注。此外,越来越多的研究工作倾向于将确定性动力学系统转移到随机动力学系统上,尤其是由非高斯乘法噪声驱动的系统。但是,对于高斯病例,许多基于原木样式的算法不能直接扩展到非高斯场景,这些场景可能存在很高的错误和低收敛问题。在这项工作中,我们克服了其中的一些挑战,并确定由$ \ alpha $稳定的l \'evy噪声驱动的随机动力系统,仅来自随机的成对数据。我们的创新包括:(1)设计一种深度学习方法,以学习l \'evy诱发的噪声的漂移和扩散系数,并在所有值中使用$ \ alpha $,(2)学习复杂的乘法噪声,而无需限制小噪声强度,(( 3)在一般输入数据假设下,即随机系统识别的端到端完整框架,即$ \ alpha $稳定的随机变量。最后,数值实验和与非本地KRAMERS-MOYAL公式与力矩生成功能的比较证实了我们方法的有效性。
translated by 谷歌翻译