域泛化(DG)是一个难度的学习问题,旨在学习一个概念域的概念模型。最近的巨型预训练模型,如剪辑和GPT-3,即基础模型(FMS),已被证明对许多分布换档具有强大,因此应导致DG的大量改进。在这项工作中,我们研究了在图像分类中采用DG问题采用剪辑的通用方法,在那里我们评估了天真零射击学习和全DG学习设置。对于后者,我们提出了AP(摊销提示),作为迅速生成形式的域推断的新方法。在域泛化基准上使用多个标准数据集,即PACS,VLC,OfficeHome和Terraincognita,Clip提供了可比的性能而无需微调任何参数,这表明FM在DG中的适用性和重要性。此外,我们表明,组合域提示跟踪带剪辑使AP能够以大的余量越大,从71.3 \%升高到79.3 \%的精度。我们希望我们的方法的简单性和成功强调强调的重要性并导致更广泛采用和分析域泛化领域的基础模型。
translated by 谷歌翻译
尽管视觉变压器(VIT)表现出令人印象深刻的表示学习能力,但我们从经验上发现,它们不能很好地将其概括为具有以前的域泛化算法的看不见的域。在本文中,我们提出了一种基于迅速学习的新方法,以嵌入域中的源域的知识提示目标域预测。具体而言,在来自相应的源域中的VIT输入令牌之前先进行域提示。每个域提示都可以有效地学习特定于领域的知识,因为仅针对一个域进行了优化。同时,我们训练一个及时的适配器,根据学习的源域提示为每个输入图像生成适当的提示。在测试时,提示适配器生成的改编提示可以利用室外图像和源域的特征之间的相似性,以正确整合源域知识。广泛的实验是在四个基准数据集上进行的。我们的方法在平均准确性方面提高了1.4%,这是使用VIT主链改善最先进算法的3.5倍。
translated by 谷歌翻译
Contrastive Language-Image Pre-trained (CLIP) models have zero-shot ability of classifying an image belonging to "[CLASS]" by using similarity between the image and the prompt sentence "a [CONTEXT] of [CLASS]". Based on exhaustive text cues in "[CONTEXT]", CLIP model is aware of different contexts, e.g. background, style, viewpoint, and exhibits unprecedented robustness against a wide range of distribution shifts. However, recent works find further fine-tuning of CLIP models improves accuracy but sacrifices the robustness on downstream tasks. We conduct an empirical investigation to show fine-tuning will corrupt the context-aware ability of pre-trained CLIP features. To solve this problem, we propose Context-Aware Robust Fine-tuning (CAR-FT). CAR-FT regularizes the model during fine-tuning to capture the context information. Specifically, we use zero-shot prompt weights to get the context distribution contained in the image. By minimizing the Kullback-Leibler Divergence (KLD) between context distributions induced by original/fine-tuned CLIP models, CAR-FT makes the context-aware ability of CLIP inherited into downstream tasks, and achieves both higher In-Distribution (ID) and Out-Of-Distribution (OOD) accuracy. The experimental results show CAR-FT achieves superior robustness on five OOD test datasets of ImageNet, and meanwhile brings accuracy gains on nine downstream tasks. Additionally, CAR-FT surpasses previous Domain Generalization (DG) methods and gets 78.5% averaged accuracy on DomainBed benchmark, building the new state-of-the-art.
translated by 谷歌翻译
诸如剪辑之类的大型预训练的视觉模型在学习表现方面表现出巨大的潜力,这些模型可以在各种下游任务中转移。与主要基于离散标签的传统表示学习不同,视觉语言预训练会使图像和文本在公共特征空间中对齐,这允许通过提示零弹性转移到下游任务,即从分类权重合成。描述兴趣类的自然语言。在这项工作中,我们表明,在实践中部署此类模型的一个重大挑战是及时的工程,它需要域专业知识,并且非常耗时 - 由于措辞的略有变化,需要花费大量时间来进行单词调整可能会对性能产生巨大影响。受到自然语言处理(NLP)迅速学习研究的最新进展的启发,我们提出了上下文优化(COP),这是一种专门用于调整类似剪辑的视觉语言模型的简单方法,用于下游图像识别。具体而言,Coop用可学习的向量建模了提示A的上下文单词,而整个预训练的参数则保持固定。为了处理不同的图像识别任务,我们提供了两个COOP的实现:统一上下文和特定于班级的上下文。通过在11个数据集上进行的大量实验,我们证明Coop只需要一两个镜头才能以相当的利润击败手工制作的提示,并且能够以16张镜头(例如16张照片)获得迅速工程的显着改进增益约为15%(最高达到45%以上)。尽管是一种基于学习的方法,但与使用手工制作的提示相比,Coop与零拍模型相比,取得了出色的域泛化性能。
translated by 谷歌翻译
域的概括(DG)旨在仅使用有限的源域学习一个通用模型。先前的DG尝试仅由于训练和测试域之间的显着域移动而无法从源域中学习域不变表示。取而代之的是,我们使用Oracle模型使用共同信息重新构建了DG目标,该模型将概括为任何可能的域。我们通过通过预训练的模型近似oracle模型来得出一个可拖动的变化下限,称为使用Oracle(Miro)的相互信息正则化。我们的广泛实验表明,Miro可显着提高分布性能。此外,我们的缩放实验表明,预训练模型的尺度越大,miro的性能提高就越大。源代码可在https://github.com/kakaobrain/miro中获得。
translated by 谷歌翻译
域的概括(DG)研究了深度学习模型推广到训练分布的能力。在过去的十年中,文献已经大量填充了一系列培训方法,这些方法声称获得了更抽象和强大的数据表示以应对域的转移。最近的研究为DG提供了可再现的基准,指出了天真的经验风险最小化(ERM)对现有算法的有效性。然而,研究人员坚持使用相同过时的特征提取器,并且尚未注意不同骨干的影响。在本文中,我们从骨干开始,提出了对其内在概括能力的全面分析,迄今为止,研究界忽略了。我们评估了各种特征提取器,从标准残差解决方案到基于变压器的架构,发现大规模单域分类精度和DG功能之间的线性相关性。我们广泛的实验表明,通过采用竞争性骨干与有效的数据增强结合使用,普通ERM的表现优于最近的DG解决方案,并实现了最先进的准确性。此外,我们的其他定性研究表明,新型骨架提供了与同类样本更相似的表示,从而将特征空间中的不同域分开。这种概括能力的增强功能使DG算法的边缘空间为调查问题,提出了一个新的范式,将骨干放在聚光灯下,并鼓励在其顶部开发一致的算法。
translated by 谷歌翻译
虽然大型审计的基础模型(FMS)对数据集级别的分布变化显示出显着的零击分类鲁棒性,但它们对亚群或组移动的稳健性相对却相对不受欢迎。我们研究了这个问题,并发现诸如剪辑之类的FMS可能对各种群体转移可能不健壮。在9个稳健性基准中,其嵌入式分类零射击分类导致平均和最差组精度之间的差距高达80.7个百分点(PP)。不幸的是,现有的改善鲁棒性的方法需要重新培训,这在大型基础模型上可能非常昂贵。我们还发现,改善模型推理的有效方法(例如,通过适配器,具有FM嵌入式作为输入的轻量级网络)不会持续改进,有时与零击相比会伤害组鲁棒性(例如,将精度差距提高到50.1 pp on 50.1 pp on On on 50.1 pp on Celeba)。因此,我们制定了一种适配器培训策略,以有效有效地改善FM组的鲁棒性。我们激励的观察是,尽管同一阶级中的群体中较差的鲁棒性在基础模型“嵌入空间”中分开,但标准适配器训练可能不会使这些要点更加紧密。因此,我们提出了对比度的适应,该适应器会通过对比度学习进行训练适配器,以使样品嵌入在同一类中的地面真相类嵌入和其他样品嵌入。在整个9个基准测试中,我们的方法始终提高组鲁棒性,使最差的组精度提高了8.5至56.0 pp。我们的方法也是有效的,这样做的方法也没有任何FM芬太尼,只有一组固定的冷冻FM嵌入。在水鸟和Celeba等基准上,这导致最差的组精度可与最先进的方法相媲美,而最先进的方法可以重新训练整个模型,而仅训练$ \ leq $ 1%的模型参数。
translated by 谷歌翻译
随着大型预训练的Vison语言模型(如剪辑)的出现,可以通过及时调整来调整可转让表示形式。及时调整试图从存储在预训练的视觉模型的图像和文本编码器中的常识中探索有益信息,以探索下游任务。最近提出的名为“上下文优化”(COP)的方法将一组可学习的向量从语言侧引入文本提示符,而单独调整文本提示符则不会影响图像编码器的计算视觉特征,从而导致了次级优势。在本文中,我们通过学习文本提示并同时为文本和图像编码器提供双重模式提示调整范式。此外,为了使视觉提示更多地集中在目标视觉概念上,我们提出了类感知的视觉及时调整(CAVPT),该调整是通过在模板提示和视觉类别令牌嵌入的语言描述之间进行交叉注意来动态生成的。我们的方法提供了一种新的范式来调整大型预训练的视觉模型,并在8个数据集上进行了广泛的实验结果,证明了该方法的有效性。我们的代码在补充材料中可用。
translated by 谷歌翻译
Prompt learning is one of the most effective and trending ways to adapt powerful vision-language foundation models like CLIP to downstream datasets by tuning learnable prompt vectors with very few samples. However, although prompt learning achieves excellent performance over in-domain data, it still faces the major challenge of generalizing to unseen classes and domains. Some existing prompt learning methods tackle this issue by adaptively generating different prompts for different tokens or domains but neglecting the ability of learned prompts to generalize to unseen domains. In this paper, we propose a novel prompt learning paradigm that directly generates domain invariant prompt generalizable to unseen domains, called MetaPrompt. Specifically, a dual-modality prompt tuning network is proposed to generate prompts for inputs from both image and text modalities. More importantly, we propose a meta-learning-based prompt tuning algorithm that explicitly constrains the prompt tuned on a specific domain or class also to achieve good performance on another domain or class. Extensive experiments on 11 datasets for base-to-new generalization and four datasets for domain generalization demonstrate that our method consistently and significantly outperforms existing methods.
translated by 谷歌翻译
预训练的视觉模型(例如,剪辑)在许多下游任务中显示出有希望的零弹性概括,并具有正确设计的文本提示。最近的作品不依赖手工设计的提示,而是使用下游任务的培训数据来学习提示。虽然有效,但针对领域数据的培训却降低了模型的概括能力,使其无法看到新领域。在这项工作中,我们提出了测试时间提示调整(TPT),该方法可以通过单个测试样本即时学习自适应提示。对于图像分类,TPT通过使用置信度选择最小化熵来优化提示,以便模型在每个测试样本的不同增强视图上都具有一致的预测。在评估对自然分布变化的概括时,TPT平均将零击的TOP-1精度提高了3.6%,超过了先前需要其他特定于任务的训练数据的迅速调整方法。在评估看不见类别的跨数据集泛化时,TPT与使用其他培训数据的最先进方法相当。项目页面:https://azshue.github.io/tpt。
translated by 谷歌翻译
Prompt tuning is a new few-shot transfer learning technique that only tunes the learnable prompt for pre-trained vision and language models such as CLIP. However, existing prompt tuning methods tend to learn spurious or entangled representations, which leads to poor generalization to unseen concepts. Towards non-spurious and efficient prompt learning from limited examples, this paper presents a novel \underline{\textbf{C}}ounterfactual \underline{\textbf{P}}rompt \underline{\textbf{L}}earning (CPL) method for vision and language models, which simultaneously employs counterfactual generation and contrastive learning in a joint optimization framework. Particularly, CPL constructs counterfactual by identifying minimal non-spurious feature change between semantically-similar positive and negative samples that causes concept change, and learns more generalizable prompt representation from both factual and counterfactual examples via contrastive learning. Extensive experiments demonstrate that CPL can obtain superior few-shot performance on different vision and language tasks than previous prompt tuning methods on CLIP. On image classification, we achieve 3.55\% average relative improvement on unseen classes across seven datasets; on image-text retrieval and visual question answering, we gain up to 4.09\% and 25.08\% relative improvements across three few-shot scenarios on unseen test sets respectively.
translated by 谷歌翻译
当部署和培训之间存在分配变化时,深层神经网络的性能恶化严重。域的概括(DG)旨在通过仅依靠一组源域来安全地传输模型以看不见目标域。尽管已经提出了各种DG方法,但最近的一项名为Domainbed的研究表明,其中大多数没有超过简单的经验风险最小化(ERM)。为此,我们提出了一个通用框架,该框架与现有的DG算法是正交的,并且可以始终如一地提高其性能。与以前的DG作品不同的是,在静态源模型上有希望成为通用的DG,我们提出的ADAODM会在测试时间适应不同目标域的源模型。具体而言,我们在共享域形式的特征提取器上创建多个域特异性分类器。特征提取器和分类器以对抗性方式进行了训练,其中特征提取器将输入样品嵌入到域不变的空间中,并且多个分类器捕获了每个分类器与特定源域有关的独特决策边界。在测试过程中,可以通过利用源分类器之间的预测分歧来有效地衡量目标和源域之间的分布差异。通过微调源模型以最大程度地减少测试时间的分歧,目标域特征与不变特征空间很好地对齐。我们验证了两种流行的DG方法,即ERM和Coral,以及四个DG基准,即VLCS,PACS,OfficeHome和TerrainCognita。结果表明,ADAODM稳定地提高了对看不见的域的概括能力,并实现了最先进的性能。
translated by 谷歌翻译
Models should be able to adapt to unseen data during test-time to avoid performance drops caused by inevitable distribution shifts in real-world deployment scenarios. In this work, we tackle the practical yet challenging test-time adaptation (TTA) problem, where a model adapts to the target domain without accessing the source data. We propose a simple recipe called \textit{Data-efficient Prompt Tuning} (DePT) with two key ingredients. First, DePT plugs visual prompts into the vision Transformer and only tunes these source-initialized prompts during adaptation. We find such parameter-efficient finetuning can efficiently adapt the model representation to the target domain without overfitting to the noise in the learning objective. Second, DePT bootstraps the source representation to the target domain by memory bank-based online pseudo-labeling. A hierarchical self-supervised regularization specially designed for prompts is jointly optimized to alleviate error accumulation during self-training. With much fewer tunable parameters, DePT demonstrates not only state-of-the-art performance on major adaptation benchmarks VisDA-C, ImageNet-C, and DomainNet-126, but also superior data efficiency, i.e., adaptation with only 1\% or 10\% data without much performance degradation compared to 100\% data. In addition, DePT is also versatile to be extended to online or multi-source TTA settings.
translated by 谷歌翻译
从自然语言监督中学习视觉表示,最近在许多开创性的作品中表现出了巨大的希望。通常,这些具有语言的视觉模型表现出对各种数据集和任务的强大可传递性。但是,由于缺乏易于使用的评估工具包和公共基准,评估这些模型的可转让性仍然很具有挑战性。为了解决这个问题,我们构建了高级版(评估语言的视觉任务级传输),这是用于评估(预训练)语言增强视觉模型的第一个基准和工具包。升华由三个组成部分组成。 (i)数据集。作为下游评估套件,它由20个图像分类数据集和35个对象检测数据集组成,每个数据集都用外部知识来增强。 (ii)工具包。开发了自动高参数调谐工具包,以促进下游任务的模型评估。 (iii)指标。多种评估指标用于测量样品效率(零射击和少量)和参数效率(线性探测和完整模型微调)。我们在https://computer-vision-in-the-wild.github.io/elevater/上公开发布leverater
translated by 谷歌翻译
在计算机视觉中广泛采用了预处理 - 最终的范式。但是,随着视觉变压器(VIT)的尺寸呈指数增长,鉴于较重的存储空间的头顶,完整的燃料变得过于望而却步。最近的研究是由参数效率转移学习(PETL)的动机,最近的研究试图插入轻巧的适应模块(例如,适配器层或及时令牌)以预处理VIT,并且仅释放这些模块,而预处理的权重则是冷冻的。但是,这些模块最初是为了芬太尼语言模型而提出的。尽管对VIT的口号很好,但他们的设计缺乏视觉任务的先验知识。在本文中,我们建议在VIT中构建卷积旁路(Convass)作为适应模块,仅引入了可训练参数的少量(少于模型参数的0.5%)以适应大型VIT。与其他PETL方法不同,卷积层的硬编码电感偏置的互惠受益,因此更适合视觉任务,尤其是在低数据表格中。 VTAB-1K基准和少量学习数据集的实验结果表明,Convass的表现优于当前面向语言的适应模块,这证明了对视觉模型量身定制面向视觉的适应模块的必要性。
translated by 谷歌翻译
我们引入了构图软提示(CSP),这是一种参数有效的学习技术,可改善大规模预处理视觉模型(VLMS)的零摄像组成性。 VLM可以在其灵活的文本编码器中代表任意类作为自然语言提示,但在组成零击基准任务上的表现不佳。为了改善VLM,我们提出了一种新颖的软提示形式。我们将构成的属性和对象视为将类定义为词汇的可学习令牌,并在多个及时的构图上调整它们。在推断期间,我们在新组合中重新组装了学习的属性对象词汇。我们表明,CSP在基准数据集上的原始VLM的表现平均为AUC上的10.9个百分点。 CSP还胜过Coop,这是一种调谐前缀上下文的软提示方法,在AUC上平均要点5.8个百分点。我们执行其他实验,以表明CSP对仅属性分类,高阶属性 - 属性对象组成以及预验证属性和微调对象的组合进行了改进。
translated by 谷歌翻译
Prompt Tuning, conditioning on task-specific learned prompt vectors, has emerged as a data-efficient and parameter-efficient method for adapting large pretrained vision-language models to multiple downstream tasks. However, existing approaches usually consider learning prompt vectors for each task independently from scratch, thereby failing to exploit the rich shareable knowledge across different vision-language tasks. In this paper, we propose multitask vision-language prompt tuning (MVLPT), which incorporates cross-task knowledge into prompt tuning for vision-language models. Specifically, (i) we demonstrate the effectiveness of learning a single transferable prompt from multiple source tasks to initialize the prompt for each target task; (ii) we show many target tasks can benefit each other from sharing prompt vectors and thus can be jointly learned via multitask prompt tuning. We benchmark the proposed MVLPT using three representative prompt tuning methods, namely text prompt tuning, visual prompt tuning, and the unified vision-language prompt tuning. Results in 20 vision tasks demonstrate that the proposed approach outperforms all single-task baseline prompt tuning methods, setting the new state-of-the-art on the few-shot ELEVATER benchmarks and cross-task generalization benchmarks. To understand where the cross-task knowledge is most effective, we also conduct a large-scale study on task transferability with 20 vision tasks in 400 combinations for each prompt tuning method. It shows that the most performant MVLPT for each prompt tuning method prefers different task combinations and many tasks can benefit each other, depending on their visual similarity and label similarity. Code is available at https://github.com/sIncerass/MVLPT.
translated by 谷歌翻译
为了使模型在看不见的域(又称域的概括)下进行概括,学习是域 - 不可思议的特征表示并捕获构成对象类别的基础语义。朝着弱监督的视力语言模型的最新进展,从廉价监督的嘈杂文本注释中学习整体表示,通过捕获在不同域下概括的对象特征,表明了他们在语义理解上的能力。但是,当涉及多个源域时,数据集中每个图像的策划文本注释的成本可能会爆炸多次,具体取决于其数字。这使得该过程乏味和不可行,阻碍了我们直接使用这些监督视觉语言方法来实现对看不见的领域的最佳概括。从此激励的是,我们研究了如何以“内在”的方式利用现有预训练的多模式网络的多模式信息,以使系统在看不见的域下概括。为此,我们提出了用于域概括(Indigo)的固有多模式,这是一种简单而优雅的方式,用于利用这些预训练的多模式网络中存在的固有模态以及视觉模态以增强概括性在测试时间内看不见域。我们在几个领域的概括设置(封闭状态,OPENDG和有限的来源)上进行了实验,并在看不见的域上显示了最新的概括性能。此外,我们提供了彻底的分析,以发展对靛蓝的整体理解。
translated by 谷歌翻译
Domain adaptation has been vastly investigated in computer vision but still requires access to target images at train time, which might be intractable in some conditions, especially for long-tail samples. In this paper, we propose the task of `Prompt-driven Zero-shot Domain Adaptation', where we adapt a model trained on a source domain using only a general textual description of the target domain, i.e., a prompt. First, we leverage a pretrained contrastive vision-language model (CLIP) to optimize affine transformations of source features, bringing them closer to target text embeddings, while preserving their content and semantics. Second, we show that augmented features can be used to perform zero-shot domain adaptation for semantic segmentation. Experiments demonstrate that our method significantly outperforms CLIP-based style transfer baselines on several datasets for the downstream task at hand. Our prompt-driven approach even outperforms one-shot unsupervised domain adaptation on some datasets, and gives comparable results on others. The code is available at https://github.com/astra-vision/PODA.
translated by 谷歌翻译
深层模型必须学习强大而可转移的表示形式,以便在新领域上表现良好。尽管已经提出了域转移方法(例如,域的适应性,域的概括)来学习跨域的可转移表示,但通常将它们应用于在Imagenet上预先训练的重置骨架。因此,现有作品很少关注预训练对域转移任务的影响。在本文中,我们对领域适应和泛化的预训练进行了广泛的研究和深入分析,即:网络体系结构,大小,训练损失和数据集。我们观察到,仅使用最先进的主链优于现有的最先进的域适应基线,并将新的基本线设置为Office-Home和Domainnet在10.7 \%和5.5 \%上提高。我们希望这项工作可以为未来的领域转移研究提供更多见解。
translated by 谷歌翻译